\(\int \frac {x^2 (c+d x+e x^2)}{(a+b x^3)^{3/2}} \, dx\) [237]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 522 \[ \int \frac {x^2 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=-\frac {2 \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}+\frac {8 e \sqrt {a+b x^3}}{3 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {4 \sqrt {2-\sqrt {3}} \sqrt [3]{a} e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {4 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{b} d-2 \left (1-\sqrt {3}\right ) \sqrt [3]{a} e\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

1/3*(-2*e*x^2-2*d*x-2*c)/b/(b*x^3+a)^(1/2)+8/3*e*(b*x^3+a)^(1/2)/b^(5/3)/( 
(1+3^(1/2))*a^(1/3)+b^(1/3)*x)-4/3*(1/2*6^(1/2)-1/2*2^(1/2))*a^(1/3)*e*(a^ 
(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^( 
1/3)+b^(1/3)*x)^2)^(1/2)*EllipticE(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^( 
1/2))*a^(1/3)+b^(1/3)*x),I*3^(1/2)+2*I)*3^(1/4)/b^(5/3)/(a^(1/3)*(a^(1/3)+ 
b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)+4/9*(1 
/2*6^(1/2)+1/2*2^(1/2))*(b^(1/3)*d-2*(1-3^(1/2))*a^(1/3)*e)*(a^(1/3)+b^(1/ 
3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3 
)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/ 
3)+b^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/b^(5/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/ 
((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.06 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.20 \[ \int \frac {x^2 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 d x \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a}\right )-2 \left (c+x (d-3 e x)+3 e x^2 \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},\frac {3}{2},\frac {5}{3},-\frac {b x^3}{a}\right )\right )}{3 b \sqrt {a+b x^3}} \] Input:

Integrate[(x^2*(c + d*x + e*x^2))/(a + b*x^3)^(3/2),x]
 

Output:

(2*d*x*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x^3)/a)] 
- 2*(c + x*(d - 3*e*x) + 3*e*x^2*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[2/3 
, 3/2, 5/3, -((b*x^3)/a)]))/(3*b*Sqrt[a + b*x^3])
 

Rubi [A] (verified)

Time = 1.06 (sec) , antiderivative size = 532, normalized size of antiderivative = 1.02, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2363, 2417, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2363

\(\displaystyle \frac {2 \int \frac {d+2 e x}{\sqrt {b x^3+a}}dx}{3 b}-\frac {2 \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 2417

\(\displaystyle \frac {2 \left (\left (d-\frac {2 \left (1-\sqrt {3}\right ) \sqrt [3]{a} e}{\sqrt [3]{b}}\right ) \int \frac {1}{\sqrt {b x^3+a}}dx+\frac {2 e \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}\right )}{3 b}-\frac {2 \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {2 \left (\frac {2 e \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}+\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (d-\frac {2 \left (1-\sqrt {3}\right ) \sqrt [3]{a} e}{\sqrt [3]{b}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{3 b}-\frac {2 \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {2 \left (\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (d-\frac {2 \left (1-\sqrt {3}\right ) \sqrt [3]{a} e}{\sqrt [3]{b}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2 e \left (\frac {2 \sqrt {a+b x^3}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{\sqrt [3]{b}}\right )}{3 b}-\frac {2 \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}\)

Input:

Int[(x^2*(c + d*x + e*x^2))/(a + b*x^3)^(3/2),x]
 

Output:

(-2*(c + d*x + e*x^2))/(3*b*Sqrt[a + b*x^3]) + (2*((2*e*((2*Sqrt[a + b*x^3 
])/(b^(1/3)*((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)) - (3^(1/4)*Sqrt[2 - Sqrt[ 
3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2 
/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqr 
t[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sq 
rt[3]])/(b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/ 
3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])))/b^(1/3) + (2*Sqrt[2 + Sqrt[3]]*(d - 
(2*(1 - Sqrt[3])*a^(1/3)*e)/b^(1/3))*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - 
 a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*E 
llipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) 
 + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + 
 b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])))/(3* 
b)
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2363
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[Pq*(( 
a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[1/(b*n*(p + 1))   Int[D[Pq, x] 
*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, m, n}, x] && PolyQ[Pq, x] && E 
qQ[m - n + 1, 0] && LtQ[p, -1]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 

rule 2417
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(c*r - (1 - Sqrt[3])*d*s)/r 
  Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r   Int[((1 - Sqrt[3])*s + r*x)/Sq 
rt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 
2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 0.45 (sec) , antiderivative size = 759, normalized size of antiderivative = 1.45

method result size
elliptic \(\text {Expression too large to display}\) \(759\)
default \(\text {Expression too large to display}\) \(779\)

Input:

int(x^2*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2*b*(1/3*e/b^2*x^2+1/3*d/b^2*x+1/3*c/b^2)/((x^3+a/b)*b)^(1/2)-4/9*I*d/b^2 
*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2 
)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*( 
-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2) 
^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b* 
x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2 
)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^ 
(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))-8/9*I 
*e/b^2*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*( 
-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3 
/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(- 
a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/ 
2)/(b*x^3+a)^(1/2)*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)) 
*EllipticE(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2) 
^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/ 
b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+1/b*(-a*b^2)^(1/3 
)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2 
)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2 
/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.19 \[ \int \frac {x^2 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 \, {\left (2 \, {\left (b d x^{3} + a d\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) - 4 \, {\left (b e x^{3} + a e\right )} \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right ) - {\left (b e x^{2} + b d x + b c\right )} \sqrt {b x^{3} + a}\right )}}{3 \, {\left (b^{3} x^{3} + a b^{2}\right )}} \] Input:

integrate(x^2*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x, algorithm="fricas")
 

Output:

2/3*(2*(b*d*x^3 + a*d)*sqrt(b)*weierstrassPInverse(0, -4*a/b, x) - 4*(b*e* 
x^3 + a*e)*sqrt(b)*weierstrassZeta(0, -4*a/b, weierstrassPInverse(0, -4*a/ 
b, x)) - (b*e*x^2 + b*d*x + b*c)*sqrt(b*x^3 + a))/(b^3*x^3 + a*b^2)
 

Sympy [A] (verification not implemented)

Time = 3.61 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.21 \[ \int \frac {x^2 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=c \left (\begin {cases} - \frac {2}{3 b \sqrt {a + b x^{3}}} & \text {for}\: b \neq 0 \\\frac {x^{3}}{3 a^{\frac {3}{2}}} & \text {otherwise} \end {cases}\right ) + \frac {d x^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {4}{3}, \frac {3}{2} \\ \frac {7}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {7}{3}\right )} + \frac {e x^{5} \Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {5}{3} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {8}{3}\right )} \] Input:

integrate(x**2*(e*x**2+d*x+c)/(b*x**3+a)**(3/2),x)
 

Output:

c*Piecewise((-2/(3*b*sqrt(a + b*x**3)), Ne(b, 0)), (x**3/(3*a**(3/2)), Tru 
e)) + d*x**4*gamma(4/3)*hyper((4/3, 3/2), (7/3,), b*x**3*exp_polar(I*pi)/a 
)/(3*a**(3/2)*gamma(7/3)) + e*x**5*gamma(5/3)*hyper((3/2, 5/3), (8/3,), b* 
x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(8/3))
 

Maxima [F]

\[ \int \frac {x^2 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {{\left (e x^{2} + d x + c\right )} x^{2}}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^2*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x, algorithm="maxima")
 

Output:

-2/3*c/(sqrt(b*x^3 + a)*b) + integrate((e*x^4 + d*x^3)*sqrt(b*x^3 + a)/(b^ 
2*x^6 + 2*a*b*x^3 + a^2), x)
 

Giac [F]

\[ \int \frac {x^2 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {{\left (e x^{2} + d x + c\right )} x^{2}}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^2*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((e*x^2 + d*x + c)*x^2/(b*x^3 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\int \frac {x^2\,\left (e\,x^2+d\,x+c\right )}{{\left (b\,x^3+a\right )}^{3/2}} \,d x \] Input:

int((x^2*(c + d*x + e*x^2))/(a + b*x^3)^(3/2),x)
 

Output:

int((x^2*(c + d*x + e*x^2))/(a + b*x^3)^(3/2), x)
 

Reduce [F]

\[ \int \frac {x^2 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {-\frac {2 \sqrt {b \,x^{3}+a}\, c}{3}-2 \sqrt {b \,x^{3}+a}\, d x +2 \sqrt {b \,x^{3}+a}\, e \,x^{2}+2 \left (\int \frac {\sqrt {b \,x^{3}+a}}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) a^{2} d +2 \left (\int \frac {\sqrt {b \,x^{3}+a}}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) a b d \,x^{3}-4 \left (\int \frac {\sqrt {b \,x^{3}+a}\, x}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) a^{2} e -4 \left (\int \frac {\sqrt {b \,x^{3}+a}\, x}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) a b e \,x^{3}}{b \left (b \,x^{3}+a \right )} \] Input:

int(x^2*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

(2*( - sqrt(a + b*x**3)*c - 3*sqrt(a + b*x**3)*d*x + 3*sqrt(a + b*x**3)*e* 
x**2 + 3*int(sqrt(a + b*x**3)/(a**2 + 2*a*b*x**3 + b**2*x**6),x)*a**2*d + 
3*int(sqrt(a + b*x**3)/(a**2 + 2*a*b*x**3 + b**2*x**6),x)*a*b*d*x**3 - 6*i 
nt((sqrt(a + b*x**3)*x)/(a**2 + 2*a*b*x**3 + b**2*x**6),x)*a**2*e - 6*int( 
(sqrt(a + b*x**3)*x)/(a**2 + 2*a*b*x**3 + b**2*x**6),x)*a*b*e*x**3))/(3*b* 
(a + b*x**3))