\(\int \frac {x^3 (c+d x+e x^2+f x^3)}{(a+b x^4)^2} \, dx\) [14]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 258 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^2} \, dx=-\frac {c+e x^2}{4 b \left (a+b x^4\right )}-\frac {x \left (d+f x^2\right )}{4 b \left (a+b x^4\right )}+\frac {e \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{4 \sqrt {a} b^{3/2}}-\frac {\left (\sqrt {b} d+3 \sqrt {a} f\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{3/4} b^{7/4}}+\frac {\left (\sqrt {b} d+3 \sqrt {a} f\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{3/4} b^{7/4}}+\frac {\left (d-\frac {3 \sqrt {a} f}{\sqrt {b}}\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x}{\sqrt {a}+\sqrt {b} x^2}\right )}{8 \sqrt {2} a^{3/4} b^{5/4}} \] Output:

-1/4*(e*x^2+c)/b/(b*x^4+a)-1/4*x*(f*x^2+d)/b/(b*x^4+a)+1/4*e*arctan(b^(1/2 
)*x^2/a^(1/2))/a^(1/2)/b^(3/2)+1/16*(b^(1/2)*d+3*a^(1/2)*f)*arctan(-1+2^(1 
/2)*b^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/b^(7/4)+1/16*(b^(1/2)*d+3*a^(1/2)*f 
)*arctan(1+2^(1/2)*b^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/b^(7/4)+1/16*(d-3*a^ 
(1/2)*f/b^(1/2))*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*x/(a^(1/2)+b^(1/2)*x^2))* 
2^(1/2)/a^(3/4)/b^(5/4)
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.14 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^2} \, dx=\frac {-\frac {8 b^{3/4} (c+x (d+x (e+f x)))}{a+b x^4}-\frac {2 \left (\sqrt {2} \sqrt {b} d+4 \sqrt [4]{a} \sqrt [4]{b} e+3 \sqrt {2} \sqrt {a} f\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{a^{3/4}}+\frac {2 \left (\sqrt {2} \sqrt {b} d-4 \sqrt [4]{a} \sqrt [4]{b} e+3 \sqrt {2} \sqrt {a} f\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{a^{3/4}}+\frac {\sqrt {2} \left (-\sqrt {b} d+3 \sqrt {a} f\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{a^{3/4}}+\frac {\sqrt {2} \left (\sqrt {b} d-3 \sqrt {a} f\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{a^{3/4}}}{32 b^{7/4}} \] Input:

Integrate[(x^3*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^2,x]
 

Output:

((-8*b^(3/4)*(c + x*(d + x*(e + f*x))))/(a + b*x^4) - (2*(Sqrt[2]*Sqrt[b]* 
d + 4*a^(1/4)*b^(1/4)*e + 3*Sqrt[2]*Sqrt[a]*f)*ArcTan[1 - (Sqrt[2]*b^(1/4) 
*x)/a^(1/4)])/a^(3/4) + (2*(Sqrt[2]*Sqrt[b]*d - 4*a^(1/4)*b^(1/4)*e + 3*Sq 
rt[2]*Sqrt[a]*f)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/a^(3/4) + (Sqrt[ 
2]*(-(Sqrt[b]*d) + 3*Sqrt[a]*f)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + 
Sqrt[b]*x^2])/a^(3/4) + (Sqrt[2]*(Sqrt[b]*d - 3*Sqrt[a]*f)*Log[Sqrt[a] + S 
qrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/a^(3/4))/(32*b^(7/4))
 

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 315, normalized size of antiderivative = 1.22, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {2363, 2415, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^2} \, dx\)

\(\Big \downarrow \) 2363

\(\displaystyle \frac {\int \frac {3 f x^2+2 e x+d}{b x^4+a}dx}{4 b}-\frac {c+d x+e x^2+f x^3}{4 b \left (a+b x^4\right )}\)

\(\Big \downarrow \) 2415

\(\displaystyle \frac {\int \left (\frac {2 e x}{b x^4+a}+\frac {3 f x^2+d}{b x^4+a}\right )dx}{4 b}-\frac {c+d x+e x^2+f x^3}{4 b \left (a+b x^4\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right ) \left (3 \sqrt {a} f+\sqrt {b} d\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right ) \left (3 \sqrt {a} f+\sqrt {b} d\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\left (\sqrt {b} d-3 \sqrt {a} f\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} d-3 \sqrt {a} f\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {e \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {b}}}{4 b}-\frac {c+d x+e x^2+f x^3}{4 b \left (a+b x^4\right )}\)

Input:

Int[(x^3*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^2,x]
 

Output:

-1/4*(c + d*x + e*x^2 + f*x^3)/(b*(a + b*x^4)) + ((e*ArcTan[(Sqrt[b]*x^2)/ 
Sqrt[a]])/(Sqrt[a]*Sqrt[b]) - ((Sqrt[b]*d + 3*Sqrt[a]*f)*ArcTan[1 - (Sqrt[ 
2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*d + 3*Sqrt 
[a]*f)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(3/4) 
) - ((Sqrt[b]*d - 3*Sqrt[a]*f)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + S 
qrt[b]*x^2])/(4*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*d - 3*Sqrt[a]*f)*Log[ 
Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*Sqrt[2]*a^(3/4)*b^( 
3/4)))/(4*b)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2363
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[Pq*(( 
a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[1/(b*n*(p + 1))   Int[D[Pq, x] 
*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, m, n}, x] && PolyQ[Pq, x] && E 
qQ[m - n + 1, 0] && LtQ[p, -1]
 

rule 2415
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff 
[Pq, x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1 
}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n/2, 
 0] && Expon[Pq, x] < n
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.12 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.32

method result size
risch \(\frac {-\frac {f \,x^{3}}{4 b}-\frac {e \,x^{2}}{4 b}-\frac {d x}{4 b}-\frac {c}{4 b}}{b \,x^{4}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (3 f \,\textit {\_R}^{2}+2 e \textit {\_R} +d \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{16 b^{2}}\) \(82\)
default \(\frac {-\frac {f \,x^{3}}{4 b}-\frac {e \,x^{2}}{4 b}-\frac {d x}{4 b}-\frac {c}{4 b}}{b \,x^{4}+a}+\frac {\frac {d \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 a}+\frac {e \arctan \left (x^{2} \sqrt {\frac {b}{a}}\right )}{\sqrt {a b}}+\frac {3 f \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}}{4 b}\) \(273\)

Input:

int(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^2,x,method=_RETURNVERBOSE)
 

Output:

(-1/4*f*x^3/b-1/4*e*x^2/b-1/4*d*x/b-1/4/b*c)/(b*x^4+a)+1/16/b^2*sum((3*_R^ 
2*f+2*_R*e+d)/_R^3*ln(x-_R),_R=RootOf(_Z^4*b+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.83 (sec) , antiderivative size = 122993, normalized size of antiderivative = 476.72 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 510 vs. \(2 (241) = 482\).

Time = 18.71 (sec) , antiderivative size = 510, normalized size of antiderivative = 1.98 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^2} \, dx=\operatorname {RootSum} {\left (65536 t^{4} a^{3} b^{7} + t^{2} \cdot \left (3072 a^{2} b^{4} d f + 2048 a^{2} b^{4} e^{2}\right ) + t \left (1152 a^{2} b^{2} e f^{2} - 128 a b^{3} d^{2} e\right ) + 81 a^{2} f^{4} + 18 a b d^{2} f^{2} - 48 a b d e^{2} f + 16 a b e^{4} + b^{2} d^{4}, \left ( t \mapsto t \log {\left (x + \frac {110592 t^{3} a^{4} b^{5} f^{3} - 12288 t^{3} a^{3} b^{6} d^{2} f + 32768 t^{3} a^{3} b^{6} d e^{2} + 13824 t^{2} a^{3} b^{4} d e f^{2} - 12288 t^{2} a^{3} b^{4} e^{3} f + 512 t^{2} a^{2} b^{5} d^{3} e + 3888 t a^{3} b^{2} d f^{4} + 5184 t a^{3} b^{2} e^{2} f^{3} - 576 t a^{2} b^{3} d^{3} f^{2} + 1728 t a^{2} b^{3} d^{2} e^{2} f + 512 t a^{2} b^{3} d e^{4} + 16 t a b^{4} d^{5} + 1458 a^{3} e f^{5} + 360 a^{2} b d e^{3} f^{2} - 192 a^{2} b e^{5} f + 30 a b^{2} d^{4} e f - 40 a b^{2} d^{3} e^{3}}{729 a^{3} f^{6} - 81 a^{2} b d^{2} f^{4} + 864 a^{2} b d e^{2} f^{3} - 576 a^{2} b e^{4} f^{2} - 9 a b^{2} d^{4} f^{2} + 96 a b^{2} d^{3} e^{2} f - 64 a b^{2} d^{2} e^{4} + b^{3} d^{6}} \right )} \right )\right )} + \frac {- c - d x - e x^{2} - f x^{3}}{4 a b + 4 b^{2} x^{4}} \] Input:

integrate(x**3*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**2,x)
 

Output:

RootSum(65536*_t**4*a**3*b**7 + _t**2*(3072*a**2*b**4*d*f + 2048*a**2*b**4 
*e**2) + _t*(1152*a**2*b**2*e*f**2 - 128*a*b**3*d**2*e) + 81*a**2*f**4 + 1 
8*a*b*d**2*f**2 - 48*a*b*d*e**2*f + 16*a*b*e**4 + b**2*d**4, Lambda(_t, _t 
*log(x + (110592*_t**3*a**4*b**5*f**3 - 12288*_t**3*a**3*b**6*d**2*f + 327 
68*_t**3*a**3*b**6*d*e**2 + 13824*_t**2*a**3*b**4*d*e*f**2 - 12288*_t**2*a 
**3*b**4*e**3*f + 512*_t**2*a**2*b**5*d**3*e + 3888*_t*a**3*b**2*d*f**4 + 
5184*_t*a**3*b**2*e**2*f**3 - 576*_t*a**2*b**3*d**3*f**2 + 1728*_t*a**2*b* 
*3*d**2*e**2*f + 512*_t*a**2*b**3*d*e**4 + 16*_t*a*b**4*d**5 + 1458*a**3*e 
*f**5 + 360*a**2*b*d*e**3*f**2 - 192*a**2*b*e**5*f + 30*a*b**2*d**4*e*f - 
40*a*b**2*d**3*e**3)/(729*a**3*f**6 - 81*a**2*b*d**2*f**4 + 864*a**2*b*d*e 
**2*f**3 - 576*a**2*b*e**4*f**2 - 9*a*b**2*d**4*f**2 + 96*a*b**2*d**3*e**2 
*f - 64*a*b**2*d**2*e**4 + b**3*d**6)))) + (-c - d*x - e*x**2 - f*x**3)/(4 
*a*b + 4*b**2*x**4)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.14 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^2} \, dx=-\frac {f x^{3} + e x^{2} + d x + c}{4 \, {\left (b^{2} x^{4} + a b\right )}} + \frac {\frac {\sqrt {2} {\left (\sqrt {b} d - 3 \, \sqrt {a} f\right )} \log \left (\sqrt {b} x^{2} + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (\sqrt {b} d - 3 \, \sqrt {a} f\right )} \log \left (\sqrt {b} x^{2} - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {3}{4}}} + \frac {2 \, {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {3}{4}} d + 3 \, \sqrt {2} a^{\frac {3}{4}} b^{\frac {1}{4}} f - 4 \, \sqrt {a} \sqrt {b} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {b}} b^{\frac {3}{4}}} + \frac {2 \, {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {3}{4}} d + 3 \, \sqrt {2} a^{\frac {3}{4}} b^{\frac {1}{4}} f + 4 \, \sqrt {a} \sqrt {b} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {b}} b^{\frac {3}{4}}}}{32 \, b} \] Input:

integrate(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^2,x, algorithm="maxima")
 

Output:

-1/4*(f*x^3 + e*x^2 + d*x + c)/(b^2*x^4 + a*b) + 1/32*(sqrt(2)*(sqrt(b)*d 
- 3*sqrt(a)*f)*log(sqrt(b)*x^2 + sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^( 
3/4)*b^(3/4)) - sqrt(2)*(sqrt(b)*d - 3*sqrt(a)*f)*log(sqrt(b)*x^2 - sqrt(2 
)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(3/4)*b^(3/4)) + 2*(sqrt(2)*a^(1/4)*b^(3 
/4)*d + 3*sqrt(2)*a^(3/4)*b^(1/4)*f - 4*sqrt(a)*sqrt(b)*e)*arctan(1/2*sqrt 
(2)*(2*sqrt(b)*x + sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(a^(3/4 
)*sqrt(sqrt(a)*sqrt(b))*b^(3/4)) + 2*(sqrt(2)*a^(1/4)*b^(3/4)*d + 3*sqrt(2 
)*a^(3/4)*b^(1/4)*f + 4*sqrt(a)*sqrt(b)*e)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x 
 - sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(a^(3/4)*sqrt(sqrt(a)*s 
qrt(b))*b^(3/4)))/b
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 300, normalized size of antiderivative = 1.16 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^2} \, dx=-\frac {f x^{3} + e x^{2} + d x + c}{4 \, {\left (b x^{4} + a\right )} b} + \frac {\sqrt {2} {\left (2 \, \sqrt {2} \sqrt {a b} b^{2} e + \left (a b^{3}\right )^{\frac {1}{4}} b^{2} d + 3 \, \left (a b^{3}\right )^{\frac {3}{4}} f\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{16 \, a b^{4}} + \frac {\sqrt {2} {\left (2 \, \sqrt {2} \sqrt {a b} b^{2} e + \left (a b^{3}\right )^{\frac {1}{4}} b^{2} d + 3 \, \left (a b^{3}\right )^{\frac {3}{4}} f\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{16 \, a b^{4}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} d - 3 \, \left (a b^{3}\right )^{\frac {3}{4}} f\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{32 \, a b^{4}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} d - 3 \, \left (a b^{3}\right )^{\frac {3}{4}} f\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{32 \, a b^{4}} \] Input:

integrate(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^2,x, algorithm="giac")
 

Output:

-1/4*(f*x^3 + e*x^2 + d*x + c)/((b*x^4 + a)*b) + 1/16*sqrt(2)*(2*sqrt(2)*s 
qrt(a*b)*b^2*e + (a*b^3)^(1/4)*b^2*d + 3*(a*b^3)^(3/4)*f)*arctan(1/2*sqrt( 
2)*(2*x + sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^4) + 1/16*sqrt(2)*(2*sqrt 
(2)*sqrt(a*b)*b^2*e + (a*b^3)^(1/4)*b^2*d + 3*(a*b^3)^(3/4)*f)*arctan(1/2* 
sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^4) + 1/32*sqrt(2)*(( 
a*b^3)^(1/4)*b^2*d - 3*(a*b^3)^(3/4)*f)*log(x^2 + sqrt(2)*x*(a/b)^(1/4) + 
sqrt(a/b))/(a*b^4) - 1/32*sqrt(2)*((a*b^3)^(1/4)*b^2*d - 3*(a*b^3)^(3/4)*f 
)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a*b^4)
 

Mupad [B] (verification not implemented)

Time = 6.77 (sec) , antiderivative size = 559, normalized size of antiderivative = 2.17 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^2} \, dx=\left (\sum _{k=1}^4\ln \left (\frac {x\,\left (2\,e^3-3\,d\,e\,f\right )}{16\,b}-\frac {3\,b\,d^2\,f-4\,b\,d\,e^2+27\,a\,f^3}{64\,b^2}-\mathrm {root}\left (65536\,a^3\,b^7\,z^4+3072\,a^2\,b^4\,d\,f\,z^2+2048\,a^2\,b^4\,e^2\,z^2+1152\,a^2\,b^2\,e\,f^2\,z-128\,a\,b^3\,d^2\,e\,z-48\,a\,b\,d\,e^2\,f+18\,a\,b\,d^2\,f^2+16\,a\,b\,e^4+81\,a^2\,f^4+b^2\,d^4,z,k\right )\,\left (3\,a\,e\,f+\frac {b\,d^2\,x}{4}-\frac {9\,a\,f^2\,x}{4}+\mathrm {root}\left (65536\,a^3\,b^7\,z^4+3072\,a^2\,b^4\,d\,f\,z^2+2048\,a^2\,b^4\,e^2\,z^2+1152\,a^2\,b^2\,e\,f^2\,z-128\,a\,b^3\,d^2\,e\,z-48\,a\,b\,d\,e^2\,f+18\,a\,b\,d^2\,f^2+16\,a\,b\,e^4+81\,a^2\,f^4+b^2\,d^4,z,k\right )\,a\,b^2\,d\,4-\mathrm {root}\left (65536\,a^3\,b^7\,z^4+3072\,a^2\,b^4\,d\,f\,z^2+2048\,a^2\,b^4\,e^2\,z^2+1152\,a^2\,b^2\,e\,f^2\,z-128\,a\,b^3\,d^2\,e\,z-48\,a\,b\,d\,e^2\,f+18\,a\,b\,d^2\,f^2+16\,a\,b\,e^4+81\,a^2\,f^4+b^2\,d^4,z,k\right )\,a\,b^2\,e\,x\,8\right )\right )\,\mathrm {root}\left (65536\,a^3\,b^7\,z^4+3072\,a^2\,b^4\,d\,f\,z^2+2048\,a^2\,b^4\,e^2\,z^2+1152\,a^2\,b^2\,e\,f^2\,z-128\,a\,b^3\,d^2\,e\,z-48\,a\,b\,d\,e^2\,f+18\,a\,b\,d^2\,f^2+16\,a\,b\,e^4+81\,a^2\,f^4+b^2\,d^4,z,k\right )\right )-\frac {\frac {c}{4\,b}+\frac {e\,x^2}{4\,b}+\frac {f\,x^3}{4\,b}+\frac {d\,x}{4\,b}}{b\,x^4+a} \] Input:

int((x^3*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^2,x)
 

Output:

symsum(log((x*(2*e^3 - 3*d*e*f))/(16*b) - (27*a*f^3 - 4*b*d*e^2 + 3*b*d^2* 
f)/(64*b^2) - root(65536*a^3*b^7*z^4 + 3072*a^2*b^4*d*f*z^2 + 2048*a^2*b^4 
*e^2*z^2 + 1152*a^2*b^2*e*f^2*z - 128*a*b^3*d^2*e*z - 48*a*b*d*e^2*f + 18* 
a*b*d^2*f^2 + 16*a*b*e^4 + 81*a^2*f^4 + b^2*d^4, z, k)*(3*a*e*f + (b*d^2*x 
)/4 - (9*a*f^2*x)/4 + 4*root(65536*a^3*b^7*z^4 + 3072*a^2*b^4*d*f*z^2 + 20 
48*a^2*b^4*e^2*z^2 + 1152*a^2*b^2*e*f^2*z - 128*a*b^3*d^2*e*z - 48*a*b*d*e 
^2*f + 18*a*b*d^2*f^2 + 16*a*b*e^4 + 81*a^2*f^4 + b^2*d^4, z, k)*a*b^2*d - 
 8*root(65536*a^3*b^7*z^4 + 3072*a^2*b^4*d*f*z^2 + 2048*a^2*b^4*e^2*z^2 + 
1152*a^2*b^2*e*f^2*z - 128*a*b^3*d^2*e*z - 48*a*b*d*e^2*f + 18*a*b*d^2*f^2 
 + 16*a*b*e^4 + 81*a^2*f^4 + b^2*d^4, z, k)*a*b^2*e*x))*root(65536*a^3*b^7 
*z^4 + 3072*a^2*b^4*d*f*z^2 + 2048*a^2*b^4*e^2*z^2 + 1152*a^2*b^2*e*f^2*z 
- 128*a*b^3*d^2*e*z - 48*a*b*d*e^2*f + 18*a*b*d^2*f^2 + 16*a*b*e^4 + 81*a^ 
2*f^4 + b^2*d^4, z, k), k, 1, 4) - (c/(4*b) + (e*x^2)/(4*b) + (f*x^3)/(4*b 
) + (d*x)/(4*b))/(a + b*x^4)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 773, normalized size of antiderivative = 3.00 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^2,x)
 

Output:

( - 6*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b 
)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*a*f - 6*b**(1/4)*a**(3/4)*sqrt(2)*atan(( 
b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*b*f* 
x**4 - 2*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqr 
t(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*a*d - 2*b**(3/4)*a**(1/4)*sqrt(2)*ata 
n((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*b 
*d*x**4 - 8*sqrt(b)*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x) 
/(b**(1/4)*a**(1/4)*sqrt(2)))*a*e - 8*sqrt(b)*sqrt(a)*atan((b**(1/4)*a**(1 
/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*b*e*x**4 + 6*b**(1 
/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b**(1 
/4)*a**(1/4)*sqrt(2)))*a*f + 6*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a* 
*(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*b*f*x**4 + 2*b* 
*(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b* 
*(1/4)*a**(1/4)*sqrt(2)))*a*d + 2*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4) 
*a**(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*b*d*x**4 - 8 
*sqrt(b)*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)* 
a**(1/4)*sqrt(2)))*a*e - 8*sqrt(b)*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) 
 + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*b*e*x**4 + 3*b**(1/4)*a**(3/4 
)*sqrt(2)*log( - b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(b)*x**2)*a*f 
 + 3*b**(1/4)*a**(3/4)*sqrt(2)*log( - b**(1/4)*a**(1/4)*sqrt(2)*x + sqr...