\(\int \frac {A+B x^2+C x^4}{(a-b x^4)^{3/2}} \, dx\) [36]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 167 \[ \int \frac {A+B x^2+C x^4}{\left (a-b x^4\right )^{3/2}} \, dx=\frac {x \left (A+\frac {a C}{b}+B x^2\right )}{2 a \sqrt {a-b x^4}}-\frac {B \sqrt {1-\frac {b x^4}{a}} E\left (\left .\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )\right |-1\right )}{2 \sqrt [4]{a} b^{3/4} \sqrt {a-b x^4}}+\frac {\left (A b+\sqrt {a} \sqrt {b} B-a C\right ) \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 a^{3/4} b^{5/4} \sqrt {a-b x^4}} \] Output:

1/2*x*(A+a*C/b+B*x^2)/a/(-b*x^4+a)^(1/2)-1/2*B*(1-b*x^4/a)^(1/2)*EllipticE 
(b^(1/4)*x/a^(1/4),I)/a^(1/4)/b^(3/4)/(-b*x^4+a)^(1/2)+1/2*(A*b+a^(1/2)*b^ 
(1/2)*B-C*a)*(1-b*x^4/a)^(1/2)*EllipticF(b^(1/4)*x/a^(1/4),I)/a^(3/4)/b^(5 
/4)/(-b*x^4+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.08 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.70 \[ \int \frac {A+B x^2+C x^4}{\left (a-b x^4\right )^{3/2}} \, dx=\frac {3 (A b+a C) x+3 (A b-a C) x \sqrt {1-\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {b x^4}{a}\right )+2 b B x^3 \sqrt {1-\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},\frac {b x^4}{a}\right )}{6 a b \sqrt {a-b x^4}} \] Input:

Integrate[(A + B*x^2 + C*x^4)/(a - b*x^4)^(3/2),x]
 

Output:

(3*(A*b + a*C)*x + 3*(A*b - a*C)*x*Sqrt[1 - (b*x^4)/a]*Hypergeometric2F1[1 
/4, 1/2, 5/4, (b*x^4)/a] + 2*b*B*x^3*Sqrt[1 - (b*x^4)/a]*Hypergeometric2F1 
[3/4, 3/2, 7/4, (b*x^4)/a])/(6*a*b*Sqrt[a - b*x^4])
 

Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {2397, 1513, 27, 765, 762, 1390, 1389, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x^2+C x^4}{\left (a-b x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2397

\(\displaystyle \frac {\int \frac {-b B x^2+A b-a C}{\sqrt {a-b x^4}}dx}{2 a b}+\frac {x \left (a C+A b+b B x^2\right )}{2 a b \sqrt {a-b x^4}}\)

\(\Big \downarrow \) 1513

\(\displaystyle \frac {\left (\sqrt {a} \sqrt {b} B-a C+A b\right ) \int \frac {1}{\sqrt {a-b x^4}}dx-\sqrt {a} \sqrt {b} B \int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a} \sqrt {a-b x^4}}dx}{2 a b}+\frac {x \left (a C+A b+b B x^2\right )}{2 a b \sqrt {a-b x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (\sqrt {a} \sqrt {b} B-a C+A b\right ) \int \frac {1}{\sqrt {a-b x^4}}dx-\sqrt {b} B \int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a-b x^4}}dx}{2 a b}+\frac {x \left (a C+A b+b B x^2\right )}{2 a b \sqrt {a-b x^4}}\)

\(\Big \downarrow \) 765

\(\displaystyle \frac {\frac {\sqrt {1-\frac {b x^4}{a}} \left (\sqrt {a} \sqrt {b} B-a C+A b\right ) \int \frac {1}{\sqrt {1-\frac {b x^4}{a}}}dx}{\sqrt {a-b x^4}}-\sqrt {b} B \int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a-b x^4}}dx}{2 a b}+\frac {x \left (a C+A b+b B x^2\right )}{2 a b \sqrt {a-b x^4}}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \left (\sqrt {a} \sqrt {b} B-a C+A b\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{b} \sqrt {a-b x^4}}-\sqrt {b} B \int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a-b x^4}}dx}{2 a b}+\frac {x \left (a C+A b+b B x^2\right )}{2 a b \sqrt {a-b x^4}}\)

\(\Big \downarrow \) 1390

\(\displaystyle \frac {\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \left (\sqrt {a} \sqrt {b} B-a C+A b\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{b} \sqrt {a-b x^4}}-\frac {\sqrt {b} B \sqrt {1-\frac {b x^4}{a}} \int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {1-\frac {b x^4}{a}}}dx}{\sqrt {a-b x^4}}}{2 a b}+\frac {x \left (a C+A b+b B x^2\right )}{2 a b \sqrt {a-b x^4}}\)

\(\Big \downarrow \) 1389

\(\displaystyle \frac {\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \left (\sqrt {a} \sqrt {b} B-a C+A b\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{b} \sqrt {a-b x^4}}-\frac {\sqrt {a} \sqrt {b} B \sqrt {1-\frac {b x^4}{a}} \int \frac {\sqrt {\frac {\sqrt {b} x^2}{\sqrt {a}}+1}}{\sqrt {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}}dx}{\sqrt {a-b x^4}}}{2 a b}+\frac {x \left (a C+A b+b B x^2\right )}{2 a b \sqrt {a-b x^4}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \left (\sqrt {a} \sqrt {b} B-a C+A b\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{b} \sqrt {a-b x^4}}-\frac {a^{3/4} \sqrt [4]{b} B \sqrt {1-\frac {b x^4}{a}} E\left (\left .\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )\right |-1\right )}{\sqrt {a-b x^4}}}{2 a b}+\frac {x \left (a C+A b+b B x^2\right )}{2 a b \sqrt {a-b x^4}}\)

Input:

Int[(A + B*x^2 + C*x^4)/(a - b*x^4)^(3/2),x]
 

Output:

(x*(A*b + a*C + b*B*x^2))/(2*a*b*Sqrt[a - b*x^4]) + (-((a^(3/4)*b^(1/4)*B* 
Sqrt[1 - (b*x^4)/a]*EllipticE[ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/Sqrt[a - b 
*x^4]) + (a^(1/4)*(A*b + Sqrt[a]*Sqrt[b]*B - a*C)*Sqrt[1 - (b*x^4)/a]*Elli 
pticF[ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/(b^(1/4)*Sqrt[a - b*x^4]))/(2*a*b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 765
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt 
[a + b*x^4]   Int[1/Sqrt[1 + b*(x^4/a)], x], x] /; FreeQ[{a, b}, x] && NegQ 
[b/a] &&  !GtQ[a, 0]
 

rule 1389
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[d/Sq 
rt[a]   Int[Sqrt[1 + e*(x^2/d)]/Sqrt[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, 
 d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] && GtQ[a, 0]
 

rule 1390
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[Sqrt 
[1 + c*(x^4/a)]/Sqrt[a + c*x^4]   Int[(d + e*x^2)/Sqrt[1 + c*(x^4/a)], x], 
x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] &&  !GtQ 
[a, 0] &&  !(LtQ[a, 0] && GtQ[c, 0])
 

rule 1513
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[-c/a, 2]}, Simp[(d*q - e)/q   Int[1/Sqrt[a + c*x^4], x], x] + Simp[e/q 
  Int[(1 + q*x^2)/Sqrt[a + c*x^4], x], x]] /; FreeQ[{a, c, d, e}, x] && Neg 
Q[c/a] && NeQ[c*d^2 + a*e^2, 0]
 

rule 2397
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = Expon[Pq, 
x]}, Module[{Q = PolynomialQuotient[b^(Floor[(q - 1)/n] + 1)*Pq, a + b*x^n, 
 x], R = PolynomialRemainder[b^(Floor[(q - 1)/n] + 1)*Pq, a + b*x^n, x]}, S 
imp[(-x)*R*((a + b*x^n)^(p + 1)/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1))), x] 
 + Simp[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1))   Int[(a + b*x^n)^(p + 1)* 
ExpandToSum[a*n*(p + 1)*Q + n*(p + 1)*R + D[x*R, x], x], x], x]] /; GeQ[q, 
n]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1]
 
Maple [A] (verified)

Time = 1.09 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.33

method result size
elliptic \(\frac {2 b \left (\frac {B \,x^{3}}{4 b a}+\frac {\left (A b +C a \right ) x}{4 a \,b^{2}}\right )}{\sqrt {-\left (x^{4}-\frac {a}{b}\right ) b}}+\frac {\left (-\frac {C}{b}+\frac {A b +C a}{2 a b}\right ) \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}+\frac {B \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {a}\, \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}\, \sqrt {b}}\) \(222\)
default \(A \left (\frac {x}{2 a \sqrt {-\left (x^{4}-\frac {a}{b}\right ) b}}+\frac {\sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )}{2 a \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}\right )+B \left (\frac {x^{3}}{2 a \sqrt {-\left (x^{4}-\frac {a}{b}\right ) b}}+\frac {\sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {a}\, \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}\, \sqrt {b}}\right )+C \left (\frac {x}{2 b \sqrt {-\left (x^{4}-\frac {a}{b}\right ) b}}-\frac {\sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )}{2 b \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}\right )\) \(297\)

Input:

int((C*x^4+B*x^2+A)/(-b*x^4+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2*b*(1/4/b/a*B*x^3+1/4/a*(A*b+C*a)/b^2*x)/(-(x^4-a/b)*b)^(1/2)+(-1/b*C+1/2 
/a*(A*b+C*a)/b)/(1/a^(1/2)*b^(1/2))^(1/2)*(1-b^(1/2)*x^2/a^(1/2))^(1/2)*(1 
+b^(1/2)*x^2/a^(1/2))^(1/2)/(-b*x^4+a)^(1/2)*EllipticF(x*(1/a^(1/2)*b^(1/2 
))^(1/2),I)+1/2*B/a^(1/2)/(1/a^(1/2)*b^(1/2))^(1/2)*(1-b^(1/2)*x^2/a^(1/2) 
)^(1/2)*(1+b^(1/2)*x^2/a^(1/2))^(1/2)/(-b*x^4+a)^(1/2)/b^(1/2)*(EllipticF( 
x*(1/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(1/a^(1/2)*b^(1/2))^(1/2),I))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.86 \[ \int \frac {A+B x^2+C x^4}{\left (a-b x^4\right )^{3/2}} \, dx=-\frac {{\left (B b^{2} x^{4} - B a b\right )} \sqrt {a} \left (\frac {b}{a}\right )^{\frac {3}{4}} E(\arcsin \left (x \left (\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) + {\left ({\left (C a b - {\left (A + B\right )} b^{2}\right )} x^{4} - C a^{2} + {\left (A + B\right )} a b\right )} \sqrt {a} \left (\frac {b}{a}\right )^{\frac {3}{4}} F(\arcsin \left (x \left (\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) + {\left (B b^{2} x^{3} + {\left (C a b + A b^{2}\right )} x\right )} \sqrt {-b x^{4} + a}}{2 \, {\left (a b^{3} x^{4} - a^{2} b^{2}\right )}} \] Input:

integrate((C*x^4+B*x^2+A)/(-b*x^4+a)^(3/2),x, algorithm="fricas")
 

Output:

-1/2*((B*b^2*x^4 - B*a*b)*sqrt(a)*(b/a)^(3/4)*elliptic_e(arcsin(x*(b/a)^(1 
/4)), -1) + ((C*a*b - (A + B)*b^2)*x^4 - C*a^2 + (A + B)*a*b)*sqrt(a)*(b/a 
)^(3/4)*elliptic_f(arcsin(x*(b/a)^(1/4)), -1) + (B*b^2*x^3 + (C*a*b + A*b^ 
2)*x)*sqrt(-b*x^4 + a))/(a*b^3*x^4 - a^2*b^2)
 

Sympy [A] (verification not implemented)

Time = 4.37 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.74 \[ \int \frac {A+B x^2+C x^4}{\left (a-b x^4\right )^{3/2}} \, dx=\frac {A x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {3}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{2 i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {5}{4}\right )} + \frac {B x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {3}{2} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{4} e^{2 i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {7}{4}\right )} + \frac {C x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {5}{4}, \frac {3}{2} \\ \frac {9}{4} \end {matrix}\middle | {\frac {b x^{4} e^{2 i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {9}{4}\right )} \] Input:

integrate((C*x**4+B*x**2+A)/(-b*x**4+a)**(3/2),x)
 

Output:

A*x*gamma(1/4)*hyper((1/4, 3/2), (5/4,), b*x**4*exp_polar(2*I*pi)/a)/(4*a* 
*(3/2)*gamma(5/4)) + B*x**3*gamma(3/4)*hyper((3/4, 3/2), (7/4,), b*x**4*ex 
p_polar(2*I*pi)/a)/(4*a**(3/2)*gamma(7/4)) + C*x**5*gamma(5/4)*hyper((5/4, 
 3/2), (9/4,), b*x**4*exp_polar(2*I*pi)/a)/(4*a**(3/2)*gamma(9/4))
 

Maxima [F]

\[ \int \frac {A+B x^2+C x^4}{\left (a-b x^4\right )^{3/2}} \, dx=\int { \frac {C x^{4} + B x^{2} + A}{{\left (-b x^{4} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((C*x^4+B*x^2+A)/(-b*x^4+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((C*x^4 + B*x^2 + A)/(-b*x^4 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {A+B x^2+C x^4}{\left (a-b x^4\right )^{3/2}} \, dx=\int { \frac {C x^{4} + B x^{2} + A}{{\left (-b x^{4} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((C*x^4+B*x^2+A)/(-b*x^4+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((C*x^4 + B*x^2 + A)/(-b*x^4 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B x^2+C x^4}{\left (a-b x^4\right )^{3/2}} \, dx=\int \frac {C\,x^4+B\,x^2+A}{{\left (a-b\,x^4\right )}^{3/2}} \,d x \] Input:

int((A + B*x^2 + C*x^4)/(a - b*x^4)^(3/2),x)
 

Output:

int((A + B*x^2 + C*x^4)/(a - b*x^4)^(3/2), x)
 

Reduce [F]

\[ \int \frac {A+B x^2+C x^4}{\left (a-b x^4\right )^{3/2}} \, dx=\frac {\sqrt {-b \,x^{4}+a}\, c x +\left (\int \frac {\sqrt {-b \,x^{4}+a}}{b^{2} x^{8}-2 a b \,x^{4}+a^{2}}d x \right ) a^{2} b -\left (\int \frac {\sqrt {-b \,x^{4}+a}}{b^{2} x^{8}-2 a b \,x^{4}+a^{2}}d x \right ) a^{2} c -\left (\int \frac {\sqrt {-b \,x^{4}+a}}{b^{2} x^{8}-2 a b \,x^{4}+a^{2}}d x \right ) a \,b^{2} x^{4}+\left (\int \frac {\sqrt {-b \,x^{4}+a}}{b^{2} x^{8}-2 a b \,x^{4}+a^{2}}d x \right ) a b c \,x^{4}+\left (\int \frac {\sqrt {-b \,x^{4}+a}\, x^{2}}{b^{2} x^{8}-2 a b \,x^{4}+a^{2}}d x \right ) a \,b^{2}-\left (\int \frac {\sqrt {-b \,x^{4}+a}\, x^{2}}{b^{2} x^{8}-2 a b \,x^{4}+a^{2}}d x \right ) b^{3} x^{4}}{b \left (-b \,x^{4}+a \right )} \] Input:

int((C*x^4+B*x^2+A)/(-b*x^4+a)^(3/2),x)
 

Output:

(sqrt(a - b*x**4)*c*x + int(sqrt(a - b*x**4)/(a**2 - 2*a*b*x**4 + b**2*x** 
8),x)*a**2*b - int(sqrt(a - b*x**4)/(a**2 - 2*a*b*x**4 + b**2*x**8),x)*a** 
2*c - int(sqrt(a - b*x**4)/(a**2 - 2*a*b*x**4 + b**2*x**8),x)*a*b**2*x**4 
+ int(sqrt(a - b*x**4)/(a**2 - 2*a*b*x**4 + b**2*x**8),x)*a*b*c*x**4 + int 
((sqrt(a - b*x**4)*x**2)/(a**2 - 2*a*b*x**4 + b**2*x**8),x)*a*b**2 - int(( 
sqrt(a - b*x**4)*x**2)/(a**2 - 2*a*b*x**4 + b**2*x**8),x)*b**3*x**4)/(b*(a 
 - b*x**4))