\(\int \frac {x^6 (c+d x+e x^2+f x^3)}{(a+b x^4)^{3/2}} \, dx\) [83]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 383 \[ \int \frac {x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx=\frac {x \left (a e-b c x^2\right )}{2 b^2 \sqrt {a+b x^4}}+\frac {a \left (d+f x^2\right )}{2 b^2 \sqrt {a+b x^4}}+\frac {d \sqrt {a+b x^4}}{2 b^2}+\frac {e x \sqrt {a+b x^4}}{3 b^2}+\frac {f x^2 \sqrt {a+b x^4}}{4 b^2}+\frac {3 c x \sqrt {a+b x^4}}{2 b^{3/2} \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {3 a f \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{4 b^{5/2}}-\frac {3 \sqrt [4]{a} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 b^{7/4} \sqrt {a+b x^4}}+\frac {\sqrt [4]{a} \left (9 \sqrt {b} c-5 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{12 b^{9/4} \sqrt {a+b x^4}} \] Output:

1/2*x*(-b*c*x^2+a*e)/b^2/(b*x^4+a)^(1/2)+1/2*a*(f*x^2+d)/b^2/(b*x^4+a)^(1/ 
2)+1/2*d*(b*x^4+a)^(1/2)/b^2+1/3*e*x*(b*x^4+a)^(1/2)/b^2+1/4*f*x^2*(b*x^4+ 
a)^(1/2)/b^2+3/2*c*x*(b*x^4+a)^(1/2)/b^(3/2)/(a^(1/2)+b^(1/2)*x^2)-3/4*a*f 
*arctanh(b^(1/2)*x^2/(b*x^4+a)^(1/2))/b^(5/2)-3/2*a^(1/4)*c*(a^(1/2)+b^(1/ 
2)*x^2)*((b*x^4+a)/(a^(1/2)+b^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*arctan(b 
^(1/4)*x/a^(1/4))),1/2*2^(1/2))/b^(7/4)/(b*x^4+a)^(1/2)+1/12*a^(1/4)*(9*b^ 
(1/2)*c-5*a^(1/2)*e)*(a^(1/2)+b^(1/2)*x^2)*((b*x^4+a)/(a^(1/2)+b^(1/2)*x^2 
)^2)^(1/2)*InverseJacobiAM(2*arctan(b^(1/4)*x/a^(1/4)),1/2*2^(1/2))/b^(9/4 
)/(b*x^4+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.18 (sec) , antiderivative size = 220, normalized size of antiderivative = 0.57 \[ \int \frac {x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx=\frac {12 a \sqrt {b} d+10 a \sqrt {b} e x+9 a \sqrt {b} f x^2+12 b^{3/2} c x^3+6 b^{3/2} d x^4+4 b^{3/2} e x^5+3 b^{3/2} f x^6-9 a^{3/2} f \sqrt {1+\frac {b x^4}{a}} \text {arcsinh}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )-10 a \sqrt {b} e x \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {b x^4}{a}\right )-12 b^{3/2} c x^3 \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},-\frac {b x^4}{a}\right )}{12 b^{5/2} \sqrt {a+b x^4}} \] Input:

Integrate[(x^6*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]
 

Output:

(12*a*Sqrt[b]*d + 10*a*Sqrt[b]*e*x + 9*a*Sqrt[b]*f*x^2 + 12*b^(3/2)*c*x^3 
+ 6*b^(3/2)*d*x^4 + 4*b^(3/2)*e*x^5 + 3*b^(3/2)*f*x^6 - 9*a^(3/2)*f*Sqrt[1 
 + (b*x^4)/a]*ArcSinh[(Sqrt[b]*x^2)/Sqrt[a]] - 10*a*Sqrt[b]*e*x*Sqrt[1 + ( 
b*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^4)/a)] - 12*b^(3/2)*c*x^ 
3*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[3/4, 3/2, 7/4, -((b*x^4)/a)])/(12* 
b^(5/2)*Sqrt[a + b*x^4])
 

Rubi [A] (verified)

Time = 1.39 (sec) , antiderivative size = 373, normalized size of antiderivative = 0.97, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2367, 2424, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2367

\(\displaystyle \frac {x \left (a e+a f x-b c x^2-b d x^3\right )}{2 b^2 \sqrt {a+b x^4}}-\frac {\int \frac {-2 a b^2 f x^5-2 a b^2 e x^4-4 a b^2 d x^3-3 a b^2 c x^2+2 a^2 b f x+a^2 b e}{\sqrt {b x^4+a}}dx}{2 a b^3}\)

\(\Big \downarrow \) 2424

\(\displaystyle \frac {x \left (a e+a f x-b c x^2-b d x^3\right )}{2 b^2 \sqrt {a+b x^4}}-\frac {\int \left (\frac {-2 a b^2 e x^4-3 a b^2 c x^2+a^2 b e}{\sqrt {b x^4+a}}+\frac {x \left (-2 a b^2 f x^4-4 a b^2 d x^2+2 a^2 b f\right )}{\sqrt {b x^4+a}}\right )dx}{2 a b^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {x \left (a e+a f x-b c x^2-b d x^3\right )}{2 b^2 \sqrt {a+b x^4}}-\frac {-\frac {a^{5/4} b^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (9 \sqrt {b} c-5 \sqrt {a} e\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{6 \sqrt {a+b x^4}}+\frac {3 a^{5/4} b^{5/4} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a+b x^4}}+\frac {3}{2} a^2 \sqrt {b} f \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {3 a b^{3/2} c x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}-2 a b d \sqrt {a+b x^4}-\frac {2}{3} a b e x \sqrt {a+b x^4}-\frac {1}{2} a b f x^2 \sqrt {a+b x^4}}{2 a b^3}\)

Input:

Int[(x^6*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]
 

Output:

(x*(a*e + a*f*x - b*c*x^2 - b*d*x^3))/(2*b^2*Sqrt[a + b*x^4]) - (-2*a*b*d* 
Sqrt[a + b*x^4] - (2*a*b*e*x*Sqrt[a + b*x^4])/3 - (a*b*f*x^2*Sqrt[a + b*x^ 
4])/2 - (3*a*b^(3/2)*c*x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt[b]*x^2) + (3*a^2 
*Sqrt[b]*f*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/2 + (3*a^(5/4)*b^(5/4)* 
c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*Elli 
pticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/Sqrt[a + b*x^4] - (a^(5/4)*b^(3 
/4)*(9*Sqrt[b]*c - 5*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/( 
Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/( 
6*Sqrt[a + b*x^4]))/(2*a*b^3)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2367
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = 
 m + Expon[Pq, x]}, Module[{Q = PolynomialQuotient[b^(Floor[(q - 1)/n] + 1) 
*x^m*Pq, a + b*x^n, x], R = PolynomialRemainder[b^(Floor[(q - 1)/n] + 1)*x^ 
m*Pq, a + b*x^n, x]}, Simp[(-x)*R*((a + b*x^n)^(p + 1)/(a*n*(p + 1)*b^(Floo 
r[(q - 1)/n] + 1))), x] + Simp[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1))   I 
nt[(a + b*x^n)^(p + 1)*ExpandToSum[a*n*(p + 1)*Q + n*(p + 1)*R + D[x*R, x], 
 x], x], x]] /; GeQ[q, n]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0 
] && LtQ[p, -1] && IGtQ[m, 0]
 

rule 2424
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, 
 x], j, k}, Int[Sum[x^j*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2 
*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, p}, 
 x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 5.01 (sec) , antiderivative size = 302, normalized size of antiderivative = 0.79

method result size
elliptic \(-\frac {2 b \left (\frac {c \,x^{3}}{4 b^{2}}-\frac {a f \,x^{2}}{4 b^{3}}-\frac {a e x}{4 b^{3}}-\frac {d a}{4 b^{3}}\right )}{\sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {f \,x^{2} \sqrt {b \,x^{4}+a}}{4 b^{2}}+\frac {e x \sqrt {b \,x^{4}+a}}{3 b^{2}}+\frac {d \sqrt {b \,x^{4}+a}}{2 b^{2}}-\frac {5 a e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{6 b^{2} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {3 a f \ln \left (2 \sqrt {b}\, x^{2}+2 \sqrt {b \,x^{4}+a}\right )}{4 b^{\frac {5}{2}}}+\frac {3 i c \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 b^{\frac {3}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\) \(302\)
default \(c \left (-\frac {x^{3}}{2 b \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {3 i \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 b^{\frac {3}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+\frac {d \left (b \,x^{4}+2 a \right )}{2 \sqrt {b \,x^{4}+a}\, b^{2}}+e \left (\frac {a x}{2 b^{2} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {x \sqrt {b \,x^{4}+a}}{3 b^{2}}-\frac {5 a \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{6 b^{2} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+f \left (\frac {x^{6}}{4 b \sqrt {b \,x^{4}+a}}+\frac {3 a \,x^{2}}{4 b^{2} \sqrt {b \,x^{4}+a}}-\frac {3 a \ln \left (\sqrt {b}\, x^{2}+\sqrt {b \,x^{4}+a}\right )}{4 b^{\frac {5}{2}}}\right )\) \(320\)
risch \(\frac {\left (3 f \,x^{2}+4 e x +6 d \right ) \sqrt {b \,x^{4}+a}}{12 b^{2}}+\frac {a e x}{2 b^{2} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {5 a e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{6 b^{2} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {a f \,x^{2}}{2 b^{2} \sqrt {b \,x^{4}+a}}-\frac {c \,x^{3}}{2 b \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {3 i c \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 b^{\frac {3}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {3 i c \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 b^{\frac {3}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {d a}{2 b^{2} \sqrt {b \,x^{4}+a}}-\frac {3 a f \ln \left (\sqrt {b}\, x^{2}+\sqrt {b \,x^{4}+a}\right )}{4 b^{\frac {5}{2}}}\) \(364\)

Input:

int(x^6*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2*b*(1/4*c/b^2*x^3-1/4/b^3*a*f*x^2-1/4/b^3*a*e*x-1/4*d/b^3*a)/((x^4+a/b)* 
b)^(1/2)+1/4*f*x^2*(b*x^4+a)^(1/2)/b^2+1/3*e*x*(b*x^4+a)^(1/2)/b^2+1/2*d*( 
b*x^4+a)^(1/2)/b^2-5/6/b^2*a*e/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1 
/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x 
*(I/a^(1/2)*b^(1/2))^(1/2),I)-3/4*a*f/b^(5/2)*ln(2*b^(1/2)*x^2+2*(b*x^4+a) 
^(1/2))+3/2*I/b^(3/2)*c*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^( 
1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF 
(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))
 

Fricas [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 242, normalized size of antiderivative = 0.63 \[ \int \frac {x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx=\frac {36 \, {\left (b^{2} c x^{5} + a b c x\right )} \sqrt {b} \left (-\frac {a}{b}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) - 4 \, {\left ({\left (9 \, b^{2} c + 5 \, b^{2} e\right )} x^{5} + {\left (9 \, a b c + 5 \, a b e\right )} x\right )} \sqrt {b} \left (-\frac {a}{b}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + 9 \, {\left (a b f x^{5} + a^{2} f x\right )} \sqrt {b} \log \left (-2 \, b x^{4} + 2 \, \sqrt {b x^{4} + a} \sqrt {b} x^{2} - a\right ) + 2 \, {\left (3 \, b^{2} f x^{7} + 4 \, b^{2} e x^{6} + 6 \, b^{2} d x^{5} + 12 \, b^{2} c x^{4} + 9 \, a b f x^{3} + 10 \, a b e x^{2} + 12 \, a b d x + 18 \, a b c\right )} \sqrt {b x^{4} + a}}{24 \, {\left (b^{4} x^{5} + a b^{3} x\right )}} \] Input:

integrate(x^6*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="fricas")
 

Output:

1/24*(36*(b^2*c*x^5 + a*b*c*x)*sqrt(b)*(-a/b)^(3/4)*elliptic_e(arcsin((-a/ 
b)^(1/4)/x), -1) - 4*((9*b^2*c + 5*b^2*e)*x^5 + (9*a*b*c + 5*a*b*e)*x)*sqr 
t(b)*(-a/b)^(3/4)*elliptic_f(arcsin((-a/b)^(1/4)/x), -1) + 9*(a*b*f*x^5 + 
a^2*f*x)*sqrt(b)*log(-2*b*x^4 + 2*sqrt(b*x^4 + a)*sqrt(b)*x^2 - a) + 2*(3* 
b^2*f*x^7 + 4*b^2*e*x^6 + 6*b^2*d*x^5 + 12*b^2*c*x^4 + 9*a*b*f*x^3 + 10*a* 
b*e*x^2 + 12*a*b*d*x + 18*a*b*c)*sqrt(b*x^4 + a))/(b^4*x^5 + a*b^3*x)
 

Sympy [A] (verification not implemented)

Time = 10.43 (sec) , antiderivative size = 202, normalized size of antiderivative = 0.53 \[ \int \frac {x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx=d \left (\begin {cases} \frac {a}{b^{2} \sqrt {a + b x^{4}}} + \frac {x^{4}}{2 b \sqrt {a + b x^{4}}} & \text {for}\: b \neq 0 \\\frac {x^{8}}{8 a^{\frac {3}{2}}} & \text {otherwise} \end {cases}\right ) + f \left (\frac {3 \sqrt {a} x^{2}}{4 b^{2} \sqrt {1 + \frac {b x^{4}}{a}}} - \frac {3 a \operatorname {asinh}{\left (\frac {\sqrt {b} x^{2}}{\sqrt {a}} \right )}}{4 b^{\frac {5}{2}}} + \frac {x^{6}}{4 \sqrt {a} b \sqrt {1 + \frac {b x^{4}}{a}}}\right ) + \frac {c x^{7} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {11}{4}\right )} + \frac {e x^{9} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {13}{4}\right )} \] Input:

integrate(x**6*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)
 

Output:

d*Piecewise((a/(b**2*sqrt(a + b*x**4)) + x**4/(2*b*sqrt(a + b*x**4)), Ne(b 
, 0)), (x**8/(8*a**(3/2)), True)) + f*(3*sqrt(a)*x**2/(4*b**2*sqrt(1 + b*x 
**4/a)) - 3*a*asinh(sqrt(b)*x**2/sqrt(a))/(4*b**(5/2)) + x**6/(4*sqrt(a)*b 
*sqrt(1 + b*x**4/a))) + c*x**7*gamma(7/4)*hyper((3/2, 7/4), (11/4,), b*x** 
4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(11/4)) + e*x**9*gamma(9/4)*hyper((3 
/2, 9/4), (13/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(13/4))
 

Maxima [F]

\[ \int \frac {x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx=\int { \frac {{\left (f x^{3} + e x^{2} + d x + c\right )} x^{6}}{{\left (b x^{4} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^6*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((f*x^3 + e*x^2 + d*x + c)*x^6/(b*x^4 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx=\int { \frac {{\left (f x^{3} + e x^{2} + d x + c\right )} x^{6}}{{\left (b x^{4} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^6*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((f*x^3 + e*x^2 + d*x + c)*x^6/(b*x^4 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx=\int \frac {x^6\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{{\left (b\,x^4+a\right )}^{3/2}} \,d x \] Input:

int((x^6*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x)
 

Output:

int((x^6*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2), x)
 

Reduce [F]

\[ \int \frac {x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx=\frac {24 \sqrt {b \,x^{4}+a}\, a b d +40 \sqrt {b \,x^{4}+a}\, a b e x +18 \sqrt {b \,x^{4}+a}\, a b f \,x^{2}+24 \sqrt {b \,x^{4}+a}\, b^{2} c \,x^{3}+12 \sqrt {b \,x^{4}+a}\, b^{2} d \,x^{4}+8 \sqrt {b \,x^{4}+a}\, b^{2} e \,x^{5}+6 \sqrt {b \,x^{4}+a}\, b^{2} f \,x^{6}+9 \sqrt {b}\, \mathrm {log}\left (\sqrt {b \,x^{4}+a}-\sqrt {b}\, x^{2}\right ) a^{2} f +9 \sqrt {b}\, \mathrm {log}\left (\sqrt {b \,x^{4}+a}-\sqrt {b}\, x^{2}\right ) a b f \,x^{4}-9 \sqrt {b}\, \mathrm {log}\left (\sqrt {b \,x^{4}+a}+\sqrt {b}\, x^{2}\right ) a^{2} f -9 \sqrt {b}\, \mathrm {log}\left (\sqrt {b \,x^{4}+a}+\sqrt {b}\, x^{2}\right ) a b f \,x^{4}-40 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{2} x^{8}+2 a b \,x^{4}+a^{2}}d x \right ) a^{3} b e -40 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{2} x^{8}+2 a b \,x^{4}+a^{2}}d x \right ) a^{2} b^{2} e \,x^{4}-72 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{2} x^{8}+2 a b \,x^{4}+a^{2}}d x \right ) a^{2} b^{2} c -72 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{2} x^{8}+2 a b \,x^{4}+a^{2}}d x \right ) a \,b^{3} c \,x^{4}}{24 b^{3} \left (b \,x^{4}+a \right )} \] Input:

int(x^6*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

(24*sqrt(a + b*x**4)*a*b*d + 40*sqrt(a + b*x**4)*a*b*e*x + 18*sqrt(a + b*x 
**4)*a*b*f*x**2 + 24*sqrt(a + b*x**4)*b**2*c*x**3 + 12*sqrt(a + b*x**4)*b* 
*2*d*x**4 + 8*sqrt(a + b*x**4)*b**2*e*x**5 + 6*sqrt(a + b*x**4)*b**2*f*x** 
6 + 9*sqrt(b)*log(sqrt(a + b*x**4) - sqrt(b)*x**2)*a**2*f + 9*sqrt(b)*log( 
sqrt(a + b*x**4) - sqrt(b)*x**2)*a*b*f*x**4 - 9*sqrt(b)*log(sqrt(a + b*x** 
4) + sqrt(b)*x**2)*a**2*f - 9*sqrt(b)*log(sqrt(a + b*x**4) + sqrt(b)*x**2) 
*a*b*f*x**4 - 40*int(sqrt(a + b*x**4)/(a**2 + 2*a*b*x**4 + b**2*x**8),x)*a 
**3*b*e - 40*int(sqrt(a + b*x**4)/(a**2 + 2*a*b*x**4 + b**2*x**8),x)*a**2* 
b**2*e*x**4 - 72*int((sqrt(a + b*x**4)*x**2)/(a**2 + 2*a*b*x**4 + b**2*x** 
8),x)*a**2*b**2*c - 72*int((sqrt(a + b*x**4)*x**2)/(a**2 + 2*a*b*x**4 + b* 
*2*x**8),x)*a*b**3*c*x**4)/(24*b**3*(a + b*x**4))