\(\int \frac {1}{\sqrt {d+e x} (c d^2-c e^2 x^2)^{3/2}} \, dx\) [194]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 115 \[ \int \frac {1}{\sqrt {d+e x} \left (c d^2-c e^2 x^2\right )^{3/2}} \, dx=\frac {d+3 e x}{4 c d^2 e \sqrt {d+e x} \sqrt {c d^2-c e^2 x^2}}-\frac {3 \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {c d^2-c e^2 x^2}}\right )}{4 \sqrt {2} c^{3/2} d^{5/2} e} \] Output:

1/4*(3*e*x+d)/c/d^2/e/(e*x+d)^(1/2)/(-c*e^2*x^2+c*d^2)^(1/2)-3/8*arctanh(2 
^(1/2)*c^(1/2)*d^(1/2)*(e*x+d)^(1/2)/(-c*e^2*x^2+c*d^2)^(1/2))*2^(1/2)/c^( 
3/2)/d^(5/2)/e
 

Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.09 \[ \int \frac {1}{\sqrt {d+e x} \left (c d^2-c e^2 x^2\right )^{3/2}} \, dx=\frac {2 \sqrt {d} (d+3 e x)-3 \sqrt {2} \sqrt {d+e x} \sqrt {d^2-e^2 x^2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {d} \sqrt {d+e x}}{\sqrt {d^2-e^2 x^2}}\right )}{8 c d^{5/2} e \sqrt {d+e x} \sqrt {c \left (d^2-e^2 x^2\right )}} \] Input:

Integrate[1/(Sqrt[d + e*x]*(c*d^2 - c*e^2*x^2)^(3/2)),x]
 

Output:

(2*Sqrt[d]*(d + 3*e*x) - 3*Sqrt[2]*Sqrt[d + e*x]*Sqrt[d^2 - e^2*x^2]*ArcTa 
nh[(Sqrt[2]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[d^2 - e^2*x^2]])/(8*c*d^(5/2)*e*Sq 
rt[d + e*x]*Sqrt[c*(d^2 - e^2*x^2)])
 

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.33, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {470, 467, 471, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {d+e x} \left (c d^2-c e^2 x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 470

\(\displaystyle \frac {3 \int \frac {\sqrt {d+e x}}{\left (c d^2-c e^2 x^2\right )^{3/2}}dx}{4 d}-\frac {1}{2 c d e \sqrt {d+e x} \sqrt {c d^2-c e^2 x^2}}\)

\(\Big \downarrow \) 467

\(\displaystyle \frac {3 \left (\frac {\int \frac {1}{\sqrt {d+e x} \sqrt {c d^2-c e^2 x^2}}dx}{2 c d}+\frac {\sqrt {d+e x}}{c d e \sqrt {c d^2-c e^2 x^2}}\right )}{4 d}-\frac {1}{2 c d e \sqrt {d+e x} \sqrt {c d^2-c e^2 x^2}}\)

\(\Big \downarrow \) 471

\(\displaystyle \frac {3 \left (\frac {e \int \frac {1}{\frac {e^2 \left (c d^2-c e^2 x^2\right )}{d+e x}-2 c d e^2}d\frac {\sqrt {c d^2-c e^2 x^2}}{\sqrt {d+e x}}}{c d}+\frac {\sqrt {d+e x}}{c d e \sqrt {c d^2-c e^2 x^2}}\right )}{4 d}-\frac {1}{2 c d e \sqrt {d+e x} \sqrt {c d^2-c e^2 x^2}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {3 \left (\frac {\sqrt {d+e x}}{c d e \sqrt {c d^2-c e^2 x^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {c d^2-c e^2 x^2}}{\sqrt {2} \sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )}{\sqrt {2} c^{3/2} d^{3/2} e}\right )}{4 d}-\frac {1}{2 c d e \sqrt {d+e x} \sqrt {c d^2-c e^2 x^2}}\)

Input:

Int[1/(Sqrt[d + e*x]*(c*d^2 - c*e^2*x^2)^(3/2)),x]
 

Output:

-1/2*1/(c*d*e*Sqrt[d + e*x]*Sqrt[c*d^2 - c*e^2*x^2]) + (3*(Sqrt[d + e*x]/( 
c*d*e*Sqrt[c*d^2 - c*e^2*x^2]) - ArcTanh[Sqrt[c*d^2 - c*e^2*x^2]/(Sqrt[2]* 
Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])]/(Sqrt[2]*c^(3/2)*d^(3/2)*e)))/(4*d)
 

Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 467
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(-c)*(c + d*x)^n*((a + b*x^2)^(p + 1)/(2*a*d*(p + 1))), x] + Simp[c*((n + 2 
*p + 2)/(2*a*(p + 1)))   Int[(c + d*x)^(n - 1)*(a + b*x^2)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && LtQ[p, -1] && LtQ[0, 
n, 1] && IntegerQ[2*p]
 

rule 470
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(-d)*(c + d*x)^n*((a + b*x^2)^(p + 1)/(2*b*c*(n + p + 1))), x] + Simp[(n + 
2*p + 2)/(2*c*(n + p + 1))   Int[(c + d*x)^(n + 1)*(a + b*x^2)^p, x], x] /; 
 FreeQ[{a, b, c, d, p}, x] && EqQ[b*c^2 + a*d^2, 0] && LtQ[n, 0] && NeQ[n + 
 p + 1, 0] && IntegerQ[2*p]
 

rule 471
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Sim 
p[2*d   Subst[Int[1/(2*b*c + d^2*x^2), x], x, Sqrt[a + b*x^2]/Sqrt[c + d*x] 
], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0]
 
Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.23

method result size
default \(-\frac {\sqrt {c \left (-e^{2} x^{2}+d^{2}\right )}\, \left (3 \sqrt {2}\, \sqrt {c \left (-e x +d \right )}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (-e x +d \right )}\, \sqrt {2}}{2 \sqrt {c d}}\right ) e x +3 \sqrt {2}\, \sqrt {c \left (-e x +d \right )}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (-e x +d \right )}\, \sqrt {2}}{2 \sqrt {c d}}\right ) d -6 \sqrt {c d}\, e x -2 \sqrt {c d}\, d \right )}{8 \left (e x +d \right )^{\frac {3}{2}} c^{2} \left (-e x +d \right ) e \,d^{2} \sqrt {c d}}\) \(141\)

Input:

int(1/(e*x+d)^(1/2)/(-c*e^2*x^2+c*d^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/8/(e*x+d)^(3/2)*(c*(-e^2*x^2+d^2))^(1/2)/c^2*(3*2^(1/2)*(c*(-e*x+d))^(1 
/2)*arctanh(1/2*(c*(-e*x+d))^(1/2)*2^(1/2)/(c*d)^(1/2))*e*x+3*2^(1/2)*(c*( 
-e*x+d))^(1/2)*arctanh(1/2*(c*(-e*x+d))^(1/2)*2^(1/2)/(c*d)^(1/2))*d-6*(c* 
d)^(1/2)*e*x-2*(c*d)^(1/2)*d)/(-e*x+d)/e/d^2/(c*d)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 379, normalized size of antiderivative = 3.30 \[ \int \frac {1}{\sqrt {d+e x} \left (c d^2-c e^2 x^2\right )^{3/2}} \, dx=\left [\frac {3 \, \sqrt {2} {\left (e^{3} x^{3} + d e^{2} x^{2} - d^{2} e x - d^{3}\right )} \sqrt {c d} \log \left (-\frac {c e^{2} x^{2} - 2 \, c d e x - 3 \, c d^{2} + 2 \, \sqrt {2} \sqrt {-c e^{2} x^{2} + c d^{2}} \sqrt {c d} \sqrt {e x + d}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 4 \, \sqrt {-c e^{2} x^{2} + c d^{2}} {\left (3 \, d e x + d^{2}\right )} \sqrt {e x + d}}{16 \, {\left (c^{2} d^{3} e^{4} x^{3} + c^{2} d^{4} e^{3} x^{2} - c^{2} d^{5} e^{2} x - c^{2} d^{6} e\right )}}, \frac {3 \, \sqrt {2} {\left (e^{3} x^{3} + d e^{2} x^{2} - d^{2} e x - d^{3}\right )} \sqrt {-c d} \arctan \left (\frac {\sqrt {2} \sqrt {-c e^{2} x^{2} + c d^{2}} \sqrt {-c d} \sqrt {e x + d}}{2 \, {\left (c d e x + c d^{2}\right )}}\right ) - 2 \, \sqrt {-c e^{2} x^{2} + c d^{2}} {\left (3 \, d e x + d^{2}\right )} \sqrt {e x + d}}{8 \, {\left (c^{2} d^{3} e^{4} x^{3} + c^{2} d^{4} e^{3} x^{2} - c^{2} d^{5} e^{2} x - c^{2} d^{6} e\right )}}\right ] \] Input:

integrate(1/(e*x+d)^(1/2)/(-c*e^2*x^2+c*d^2)^(3/2),x, algorithm="fricas")
 

Output:

[1/16*(3*sqrt(2)*(e^3*x^3 + d*e^2*x^2 - d^2*e*x - d^3)*sqrt(c*d)*log(-(c*e 
^2*x^2 - 2*c*d*e*x - 3*c*d^2 + 2*sqrt(2)*sqrt(-c*e^2*x^2 + c*d^2)*sqrt(c*d 
)*sqrt(e*x + d))/(e^2*x^2 + 2*d*e*x + d^2)) - 4*sqrt(-c*e^2*x^2 + c*d^2)*( 
3*d*e*x + d^2)*sqrt(e*x + d))/(c^2*d^3*e^4*x^3 + c^2*d^4*e^3*x^2 - c^2*d^5 
*e^2*x - c^2*d^6*e), 1/8*(3*sqrt(2)*(e^3*x^3 + d*e^2*x^2 - d^2*e*x - d^3)* 
sqrt(-c*d)*arctan(1/2*sqrt(2)*sqrt(-c*e^2*x^2 + c*d^2)*sqrt(-c*d)*sqrt(e*x 
 + d)/(c*d*e*x + c*d^2)) - 2*sqrt(-c*e^2*x^2 + c*d^2)*(3*d*e*x + d^2)*sqrt 
(e*x + d))/(c^2*d^3*e^4*x^3 + c^2*d^4*e^3*x^2 - c^2*d^5*e^2*x - c^2*d^6*e) 
]
 

Sympy [F]

\[ \int \frac {1}{\sqrt {d+e x} \left (c d^2-c e^2 x^2\right )^{3/2}} \, dx=\int \frac {1}{\left (- c \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {3}{2}} \sqrt {d + e x}}\, dx \] Input:

integrate(1/(e*x+d)**(1/2)/(-c*e**2*x**2+c*d**2)**(3/2),x)
 

Output:

Integral(1/((-c*(-d + e*x)*(d + e*x))**(3/2)*sqrt(d + e*x)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {d+e x} \left (c d^2-c e^2 x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-c e^{2} x^{2} + c d^{2}\right )}^{\frac {3}{2}} \sqrt {e x + d}} \,d x } \] Input:

integrate(1/(e*x+d)^(1/2)/(-c*e^2*x^2+c*d^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((-c*e^2*x^2 + c*d^2)^(3/2)*sqrt(e*x + d)), x)
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.96 \[ \int \frac {1}{\sqrt {d+e x} \left (c d^2-c e^2 x^2\right )^{3/2}} \, dx=\frac {\frac {3 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {-{\left (e x + d\right )} c + 2 \, c d}}{2 \, \sqrt {-c d}}\right )}{\sqrt {-c d} c d^{2}} + \frac {2 \, {\left (3 \, {\left (e x + d\right )} c - 2 \, c d\right )}}{{\left (2 \, \sqrt {-{\left (e x + d\right )} c + 2 \, c d} c d - {\left (-{\left (e x + d\right )} c + 2 \, c d\right )}^{\frac {3}{2}}\right )} c d^{2}}}{8 \, e} \] Input:

integrate(1/(e*x+d)^(1/2)/(-c*e^2*x^2+c*d^2)^(3/2),x, algorithm="giac")
 

Output:

1/8*(3*sqrt(2)*arctan(1/2*sqrt(2)*sqrt(-(e*x + d)*c + 2*c*d)/sqrt(-c*d))/( 
sqrt(-c*d)*c*d^2) + 2*(3*(e*x + d)*c - 2*c*d)/((2*sqrt(-(e*x + d)*c + 2*c* 
d)*c*d - (-(e*x + d)*c + 2*c*d)^(3/2))*c*d^2))/e
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {d+e x} \left (c d^2-c e^2 x^2\right )^{3/2}} \, dx=\int \frac {1}{{\left (c\,d^2-c\,e^2\,x^2\right )}^{3/2}\,\sqrt {d+e\,x}} \,d x \] Input:

int(1/((c*d^2 - c*e^2*x^2)^(3/2)*(d + e*x)^(1/2)),x)
 

Output:

int(1/((c*d^2 - c*e^2*x^2)^(3/2)*(d + e*x)^(1/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.36 \[ \int \frac {1}{\sqrt {d+e x} \left (c d^2-c e^2 x^2\right )^{3/2}} \, dx=\frac {\sqrt {c}\, \left (3 \sqrt {d}\, \sqrt {-e x +d}\, \sqrt {2}\, \mathrm {log}\left (\sqrt {-e x +d}-\sqrt {d}\, \sqrt {2}\right ) d +3 \sqrt {d}\, \sqrt {-e x +d}\, \sqrt {2}\, \mathrm {log}\left (\sqrt {-e x +d}-\sqrt {d}\, \sqrt {2}\right ) e x -3 \sqrt {d}\, \sqrt {-e x +d}\, \sqrt {2}\, \mathrm {log}\left (\sqrt {-e x +d}+\sqrt {d}\, \sqrt {2}\right ) d -3 \sqrt {d}\, \sqrt {-e x +d}\, \sqrt {2}\, \mathrm {log}\left (\sqrt {-e x +d}+\sqrt {d}\, \sqrt {2}\right ) e x +4 d^{2}+12 d e x \right )}{16 \sqrt {-e x +d}\, c^{2} d^{3} e \left (e x +d \right )} \] Input:

int(1/(e*x+d)^(1/2)/(-c*e^2*x^2+c*d^2)^(3/2),x)
 

Output:

(sqrt(c)*(3*sqrt(d)*sqrt(d - e*x)*sqrt(2)*log(sqrt(d - e*x) - sqrt(d)*sqrt 
(2))*d + 3*sqrt(d)*sqrt(d - e*x)*sqrt(2)*log(sqrt(d - e*x) - sqrt(d)*sqrt( 
2))*e*x - 3*sqrt(d)*sqrt(d - e*x)*sqrt(2)*log(sqrt(d - e*x) + sqrt(d)*sqrt 
(2))*d - 3*sqrt(d)*sqrt(d - e*x)*sqrt(2)*log(sqrt(d - e*x) + sqrt(d)*sqrt( 
2))*e*x + 4*d**2 + 12*d*e*x))/(16*sqrt(d - e*x)*c**2*d**3*e*(d + e*x))