\(\int \frac {c+d x}{(c^2-d^2 x^2)^{2/3}} \, dx\) [265]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 310 \[ \int \frac {c+d x}{\left (c^2-d^2 x^2\right )^{2/3}} \, dx=-\frac {3 \sqrt [3]{c^2-d^2 x^2}}{2 d}+\frac {3^{3/4} \sqrt {2-\sqrt {3}} c \left (c^{2/3}-\sqrt [3]{c^2-d^2 x^2}\right ) \sqrt {\frac {c^{4/3}+c^{2/3} \sqrt [3]{c^2-d^2 x^2}+\left (c^2-d^2 x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) c^{2/3}-\sqrt [3]{c^2-d^2 x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) c^{2/3}-\sqrt [3]{c^2-d^2 x^2}}{\left (1-\sqrt {3}\right ) c^{2/3}-\sqrt [3]{c^2-d^2 x^2}}\right ),-7+4 \sqrt {3}\right )}{d^2 x \sqrt {-\frac {c^{2/3} \left (c^{2/3}-\sqrt [3]{c^2-d^2 x^2}\right )}{\left (\left (1-\sqrt {3}\right ) c^{2/3}-\sqrt [3]{c^2-d^2 x^2}\right )^2}}} \] Output:

-3/2*(-d^2*x^2+c^2)^(1/3)/d+3^(3/4)*(1/2*6^(1/2)-1/2*2^(1/2))*c*(c^(2/3)-( 
-d^2*x^2+c^2)^(1/3))*((c^(4/3)+c^(2/3)*(-d^2*x^2+c^2)^(1/3)+(-d^2*x^2+c^2) 
^(2/3))/((1-3^(1/2))*c^(2/3)-(-d^2*x^2+c^2)^(1/3))^2)^(1/2)*EllipticF(((1+ 
3^(1/2))*c^(2/3)-(-d^2*x^2+c^2)^(1/3))/((1-3^(1/2))*c^(2/3)-(-d^2*x^2+c^2) 
^(1/3)),2*I-I*3^(1/2))/d^2/x/(-c^(2/3)*(c^(2/3)-(-d^2*x^2+c^2)^(1/3))/((1- 
3^(1/2))*c^(2/3)-(-d^2*x^2+c^2)^(1/3))^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.80 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.26 \[ \int \frac {c+d x}{\left (c^2-d^2 x^2\right )^{2/3}} \, dx=-\frac {3 \sqrt [3]{c^2-d^2 x^2}}{2 d}+\frac {c x \left (1-\frac {d^2 x^2}{c^2}\right )^{2/3} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {3}{2},\frac {d^2 x^2}{c^2}\right )}{\left (c^2-d^2 x^2\right )^{2/3}} \] Input:

Integrate[(c + d*x)/(c^2 - d^2*x^2)^(2/3),x]
 

Output:

(-3*(c^2 - d^2*x^2)^(1/3))/(2*d) + (c*x*(1 - (d^2*x^2)/c^2)^(2/3)*Hypergeo 
metric2F1[1/2, 2/3, 3/2, (d^2*x^2)/c^2])/(c^2 - d^2*x^2)^(2/3)
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {455, 234, 760}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x}{\left (c^2-d^2 x^2\right )^{2/3}} \, dx\)

\(\Big \downarrow \) 455

\(\displaystyle c \int \frac {1}{\left (c^2-d^2 x^2\right )^{2/3}}dx-\frac {3 \sqrt [3]{c^2-d^2 x^2}}{2 d}\)

\(\Big \downarrow \) 234

\(\displaystyle -\frac {3 c \sqrt {-d^2 x^2} \int \frac {1}{\sqrt {-d^2 x^2}}d\sqrt [3]{c^2-d^2 x^2}}{2 d^2 x}-\frac {3 \sqrt [3]{c^2-d^2 x^2}}{2 d}\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {3^{3/4} \sqrt {2-\sqrt {3}} c \left (c^{2/3}-\sqrt [3]{c^2-d^2 x^2}\right ) \sqrt {\frac {c^{4/3}+\left (c^2-d^2 x^2\right )^{2/3}+c^{2/3} \sqrt [3]{c^2-d^2 x^2}}{\left (\left (1-\sqrt {3}\right ) c^{2/3}-\sqrt [3]{c^2-d^2 x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) c^{2/3}-\sqrt [3]{c^2-d^2 x^2}}{\left (1-\sqrt {3}\right ) c^{2/3}-\sqrt [3]{c^2-d^2 x^2}}\right ),-7+4 \sqrt {3}\right )}{d^2 x \sqrt {-\frac {c^{2/3} \left (c^{2/3}-\sqrt [3]{c^2-d^2 x^2}\right )}{\left (\left (1-\sqrt {3}\right ) c^{2/3}-\sqrt [3]{c^2-d^2 x^2}\right )^2}}}-\frac {3 \sqrt [3]{c^2-d^2 x^2}}{2 d}\)

Input:

Int[(c + d*x)/(c^2 - d^2*x^2)^(2/3),x]
 

Output:

(-3*(c^2 - d^2*x^2)^(1/3))/(2*d) + (3^(3/4)*Sqrt[2 - Sqrt[3]]*c*(c^(2/3) - 
 (c^2 - d^2*x^2)^(1/3))*Sqrt[(c^(4/3) + c^(2/3)*(c^2 - d^2*x^2)^(1/3) + (c 
^2 - d^2*x^2)^(2/3))/((1 - Sqrt[3])*c^(2/3) - (c^2 - d^2*x^2)^(1/3))^2]*El 
lipticF[ArcSin[((1 + Sqrt[3])*c^(2/3) - (c^2 - d^2*x^2)^(1/3))/((1 - Sqrt[ 
3])*c^(2/3) - (c^2 - d^2*x^2)^(1/3))], -7 + 4*Sqrt[3]])/(d^2*x*Sqrt[-((c^( 
2/3)*(c^(2/3) - (c^2 - d^2*x^2)^(1/3)))/((1 - Sqrt[3])*c^(2/3) - (c^2 - d^ 
2*x^2)^(1/3))^2)])
 

Defintions of rubi rules used

rule 234
Int[((a_) + (b_.)*(x_)^2)^(-2/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[1/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 455
Int[((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*(( 
a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] + Simp[c   Int[(a + b*x^2)^p, x], x] 
/; FreeQ[{a, b, c, d, p}, x] &&  !LeQ[p, -1]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 
Maple [F]

\[\int \frac {d x +c}{\left (-d^{2} x^{2}+c^{2}\right )^{\frac {2}{3}}}d x\]

Input:

int((d*x+c)/(-d^2*x^2+c^2)^(2/3),x)
 

Output:

int((d*x+c)/(-d^2*x^2+c^2)^(2/3),x)
 

Fricas [F]

\[ \int \frac {c+d x}{\left (c^2-d^2 x^2\right )^{2/3}} \, dx=\int { \frac {d x + c}{{\left (-d^{2} x^{2} + c^{2}\right )}^{\frac {2}{3}}} \,d x } \] Input:

integrate((d*x+c)/(-d^2*x^2+c^2)^(2/3),x, algorithm="fricas")
 

Output:

integral(-(-d^2*x^2 + c^2)^(1/3)/(d*x - c), x)
 

Sympy [A] (verification not implemented)

Time = 0.98 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.21 \[ \int \frac {c+d x}{\left (c^2-d^2 x^2\right )^{2/3}} \, dx=d \left (\begin {cases} \frac {x^{2}}{2 \left (c^{2}\right )^{\frac {2}{3}}} & \text {for}\: d^{2} = 0 \\- \frac {3 \sqrt [3]{c^{2} - d^{2} x^{2}}}{2 d^{2}} & \text {otherwise} \end {cases}\right ) + \frac {x {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {3}{2} \end {matrix}\middle | {\frac {d^{2} x^{2} e^{2 i \pi }}{c^{2}}} \right )}}{\sqrt [3]{c}} \] Input:

integrate((d*x+c)/(-d**2*x**2+c**2)**(2/3),x)
 

Output:

d*Piecewise((x**2/(2*(c**2)**(2/3)), Eq(d**2, 0)), (-3*(c**2 - d**2*x**2)* 
*(1/3)/(2*d**2), True)) + x*hyper((1/2, 2/3), (3/2,), d**2*x**2*exp_polar( 
2*I*pi)/c**2)/c**(1/3)
 

Maxima [F]

\[ \int \frac {c+d x}{\left (c^2-d^2 x^2\right )^{2/3}} \, dx=\int { \frac {d x + c}{{\left (-d^{2} x^{2} + c^{2}\right )}^{\frac {2}{3}}} \,d x } \] Input:

integrate((d*x+c)/(-d^2*x^2+c^2)^(2/3),x, algorithm="maxima")
 

Output:

integrate((d*x + c)/(-d^2*x^2 + c^2)^(2/3), x)
 

Giac [F]

\[ \int \frac {c+d x}{\left (c^2-d^2 x^2\right )^{2/3}} \, dx=\int { \frac {d x + c}{{\left (-d^{2} x^{2} + c^{2}\right )}^{\frac {2}{3}}} \,d x } \] Input:

integrate((d*x+c)/(-d^2*x^2+c^2)^(2/3),x, algorithm="giac")
 

Output:

integrate((d*x + c)/(-d^2*x^2 + c^2)^(2/3), x)
 

Mupad [B] (verification not implemented)

Time = 7.35 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.22 \[ \int \frac {c+d x}{\left (c^2-d^2 x^2\right )^{2/3}} \, dx=\frac {c\,x\,{\left (1-\frac {d^2\,x^2}{c^2}\right )}^{2/3}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {2}{3};\ \frac {3}{2};\ \frac {d^2\,x^2}{c^2}\right )}{{\left (c^2-d^2\,x^2\right )}^{2/3}}-\frac {3\,{\left (c^2-d^2\,x^2\right )}^{1/3}}{2\,d} \] Input:

int((c + d*x)/(c^2 - d^2*x^2)^(2/3),x)
 

Output:

(c*x*(1 - (d^2*x^2)/c^2)^(2/3)*hypergeom([1/2, 2/3], 3/2, (d^2*x^2)/c^2))/ 
(c^2 - d^2*x^2)^(2/3) - (3*(c^2 - d^2*x^2)^(1/3))/(2*d)
 

Reduce [F]

\[ \int \frac {c+d x}{\left (c^2-d^2 x^2\right )^{2/3}} \, dx=\frac {-3 \left (-d^{2} x^{2}+c^{2}\right )^{\frac {1}{3}}+2 \left (\int \frac {1}{\left (-d^{2} x^{2}+c^{2}\right )^{\frac {2}{3}}}d x \right ) c d}{2 d} \] Input:

int((d*x+c)/(-d^2*x^2+c^2)^(2/3),x)
 

Output:

( - 3*(c**2 - d**2*x**2)**(1/3) + 2*int(1/(c**2 - d**2*x**2)**(2/3),x)*c*d 
)/(2*d)