\(\int \frac {(d^2-e^2 x^2)^{7/2}}{(d+e x)^2} \, dx\) [64]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [C] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 110 \[ \int \frac {\left (d^2-e^2 x^2\right )^{7/2}}{(d+e x)^2} \, dx=\frac {7}{16} d^4 x \sqrt {d^2-e^2 x^2}+\frac {7}{24} d^2 x \left (d^2-e^2 x^2\right )^{3/2}+\frac {(12 d-5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{30 e}+\frac {7 d^6 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{16 e} \] Output:

7/16*d^4*x*(-e^2*x^2+d^2)^(1/2)+7/24*d^2*x*(-e^2*x^2+d^2)^(3/2)+1/30*(-5*e 
*x+12*d)*(-e^2*x^2+d^2)^(5/2)/e+7/16*d^6*arctan(e*x/(-e^2*x^2+d^2)^(1/2))/ 
e
 

Mathematica [A] (verified)

Time = 0.48 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.04 \[ \int \frac {\left (d^2-e^2 x^2\right )^{7/2}}{(d+e x)^2} \, dx=\frac {\sqrt {d^2-e^2 x^2} \left (96 d^5+135 d^4 e x-192 d^3 e^2 x^2+10 d^2 e^3 x^3+96 d e^4 x^4-40 e^5 x^5\right )-210 d^6 \arctan \left (\frac {e x}{\sqrt {d^2}-\sqrt {d^2-e^2 x^2}}\right )}{240 e} \] Input:

Integrate[(d^2 - e^2*x^2)^(7/2)/(d + e*x)^2,x]
 

Output:

(Sqrt[d^2 - e^2*x^2]*(96*d^5 + 135*d^4*e*x - 192*d^3*e^2*x^2 + 10*d^2*e^3* 
x^3 + 96*d*e^4*x^4 - 40*e^5*x^5) - 210*d^6*ArcTan[(e*x)/(Sqrt[d^2] - Sqrt[ 
d^2 - e^2*x^2])])/(240*e)
 

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.29, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {464, 469, 455, 211, 211, 224, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d^2-e^2 x^2\right )^{7/2}}{(d+e x)^2} \, dx\)

\(\Big \downarrow \) 464

\(\displaystyle \int (d-e x)^2 \left (d^2-e^2 x^2\right )^{3/2}dx\)

\(\Big \downarrow \) 469

\(\displaystyle \frac {7}{6} d \int (d-e x) \left (d^2-e^2 x^2\right )^{3/2}dx+\frac {(d-e x) \left (d^2-e^2 x^2\right )^{5/2}}{6 e}\)

\(\Big \downarrow \) 455

\(\displaystyle \frac {7}{6} d \left (d \int \left (d^2-e^2 x^2\right )^{3/2}dx+\frac {\left (d^2-e^2 x^2\right )^{5/2}}{5 e}\right )+\frac {(d-e x) \left (d^2-e^2 x^2\right )^{5/2}}{6 e}\)

\(\Big \downarrow \) 211

\(\displaystyle \frac {7}{6} d \left (d \left (\frac {3}{4} d^2 \int \sqrt {d^2-e^2 x^2}dx+\frac {1}{4} x \left (d^2-e^2 x^2\right )^{3/2}\right )+\frac {\left (d^2-e^2 x^2\right )^{5/2}}{5 e}\right )+\frac {(d-e x) \left (d^2-e^2 x^2\right )^{5/2}}{6 e}\)

\(\Big \downarrow \) 211

\(\displaystyle \frac {7}{6} d \left (d \left (\frac {3}{4} d^2 \left (\frac {1}{2} d^2 \int \frac {1}{\sqrt {d^2-e^2 x^2}}dx+\frac {1}{2} x \sqrt {d^2-e^2 x^2}\right )+\frac {1}{4} x \left (d^2-e^2 x^2\right )^{3/2}\right )+\frac {\left (d^2-e^2 x^2\right )^{5/2}}{5 e}\right )+\frac {(d-e x) \left (d^2-e^2 x^2\right )^{5/2}}{6 e}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {7}{6} d \left (d \left (\frac {3}{4} d^2 \left (\frac {1}{2} d^2 \int \frac {1}{\frac {e^2 x^2}{d^2-e^2 x^2}+1}d\frac {x}{\sqrt {d^2-e^2 x^2}}+\frac {1}{2} x \sqrt {d^2-e^2 x^2}\right )+\frac {1}{4} x \left (d^2-e^2 x^2\right )^{3/2}\right )+\frac {\left (d^2-e^2 x^2\right )^{5/2}}{5 e}\right )+\frac {(d-e x) \left (d^2-e^2 x^2\right )^{5/2}}{6 e}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {7}{6} d \left (d \left (\frac {3}{4} d^2 \left (\frac {d^2 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e}+\frac {1}{2} x \sqrt {d^2-e^2 x^2}\right )+\frac {1}{4} x \left (d^2-e^2 x^2\right )^{3/2}\right )+\frac {\left (d^2-e^2 x^2\right )^{5/2}}{5 e}\right )+\frac {(d-e x) \left (d^2-e^2 x^2\right )^{5/2}}{6 e}\)

Input:

Int[(d^2 - e^2*x^2)^(7/2)/(d + e*x)^2,x]
 

Output:

((d - e*x)*(d^2 - e^2*x^2)^(5/2))/(6*e) + (7*d*((d^2 - e^2*x^2)^(5/2)/(5*e 
) + d*((x*(d^2 - e^2*x^2)^(3/2))/4 + (3*d^2*((x*Sqrt[d^2 - e^2*x^2])/2 + ( 
d^2*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(2*e)))/4)))/6
 

Defintions of rubi rules used

rule 211
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x*((a + b*x^2)^p/(2*p + 1 
)), x] + Simp[2*a*(p/(2*p + 1))   Int[(a + b*x^2)^(p - 1), x], x] /; FreeQ[ 
{a, b}, x] && GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[6*p])
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 455
Int[((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*(( 
a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] + Simp[c   Int[(a + b*x^2)^p, x], x] 
/; FreeQ[{a, b, c, d, p}, x] &&  !LeQ[p, -1]
 

rule 464
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[( 
a + b*x^2)^(n + p)/(a/c + b*(x/d))^n, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b 
*c^2 + a*d^2, 0] && IntegerQ[n] && RationalQ[p] && (LtQ[0, -n, p] || LtQ[p, 
 -n, 0]) && NeQ[n, 2] && NeQ[n, -1]
 

rule 469
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
d*(c + d*x)^(n - 1)*((a + b*x^2)^(p + 1)/(b*(n + 2*p + 1))), x] + Simp[2*c* 
((n + p)/(n + 2*p + 1))   Int[(c + d*x)^(n - 1)*(a + b*x^2)^p, x], x] /; Fr 
eeQ[{a, b, c, d, p}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[n, 0] && NeQ[n + 2* 
p + 1, 0] && IntegerQ[2*p]
 
Maple [A] (verified)

Time = 0.26 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.95

method result size
risch \(\frac {\left (-40 e^{5} x^{5}+96 d \,e^{4} x^{4}+10 d^{2} e^{3} x^{3}-192 d^{3} e^{2} x^{2}+135 d^{4} e x +96 d^{5}\right ) \sqrt {-e^{2} x^{2}+d^{2}}}{240 e}+\frac {7 d^{6} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{16 \sqrt {e^{2}}}\) \(105\)
default \(\frac {\frac {\left (-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {9}{2}}}{5 d e \left (x +\frac {d}{e}\right )^{2}}+\frac {7 e \left (\frac {\left (-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{7}+d e \left (-\frac {\left (-2 e^{2} \left (x +\frac {d}{e}\right )+2 d e \right ) \left (-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{12 e^{2}}+\frac {5 d^{2} \left (-\frac {\left (-2 e^{2} \left (x +\frac {d}{e}\right )+2 d e \right ) \left (-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 e^{2}}+\frac {3 d^{2} \left (-\frac {\left (-2 e^{2} \left (x +\frac {d}{e}\right )+2 d e \right ) \sqrt {-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )}}{4 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )\right )}{5 d}}{e^{2}}\) \(300\)

Input:

int((-e^2*x^2+d^2)^(7/2)/(e*x+d)^2,x,method=_RETURNVERBOSE)
 

Output:

1/240*(-40*e^5*x^5+96*d*e^4*x^4+10*d^2*e^3*x^3-192*d^3*e^2*x^2+135*d^4*e*x 
+96*d^5)/e*(-e^2*x^2+d^2)^(1/2)+7/16*d^6/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/ 
(-e^2*x^2+d^2)^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.95 \[ \int \frac {\left (d^2-e^2 x^2\right )^{7/2}}{(d+e x)^2} \, dx=-\frac {210 \, d^{6} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) + {\left (40 \, e^{5} x^{5} - 96 \, d e^{4} x^{4} - 10 \, d^{2} e^{3} x^{3} + 192 \, d^{3} e^{2} x^{2} - 135 \, d^{4} e x - 96 \, d^{5}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{240 \, e} \] Input:

integrate((-e^2*x^2+d^2)^(7/2)/(e*x+d)^2,x, algorithm="fricas")
 

Output:

-1/240*(210*d^6*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + (40*e^5*x^5 - 
96*d*e^4*x^4 - 10*d^2*e^3*x^3 + 192*d^3*e^2*x^2 - 135*d^4*e*x - 96*d^5)*sq 
rt(-e^2*x^2 + d^2))/e
 

Sympy [A] (verification not implemented)

Time = 2.43 (sec) , antiderivative size = 328, normalized size of antiderivative = 2.98 \[ \int \frac {\left (d^2-e^2 x^2\right )^{7/2}}{(d+e x)^2} \, dx=d^{4} \left (\begin {cases} \frac {d^{2} \left (\begin {cases} \frac {\log {\left (- 2 e^{2} x + 2 \sqrt {- e^{2}} \sqrt {d^{2} - e^{2} x^{2}} \right )}}{\sqrt {- e^{2}}} & \text {for}\: d^{2} \neq 0 \\\frac {x \log {\left (x \right )}}{\sqrt {- e^{2} x^{2}}} & \text {otherwise} \end {cases}\right )}{2} + \frac {x \sqrt {d^{2} - e^{2} x^{2}}}{2} & \text {for}\: e^{2} \neq 0 \\x \sqrt {d^{2}} & \text {otherwise} \end {cases}\right ) - 2 d^{3} e \left (\begin {cases} \sqrt {d^{2} - e^{2} x^{2}} \left (- \frac {d^{2}}{3 e^{2}} + \frac {x^{2}}{3}\right ) & \text {for}\: e^{2} \neq 0 \\\frac {x^{2} \sqrt {d^{2}}}{2} & \text {otherwise} \end {cases}\right ) + 2 d e^{3} \left (\begin {cases} \sqrt {d^{2} - e^{2} x^{2}} \left (- \frac {2 d^{4}}{15 e^{4}} - \frac {d^{2} x^{2}}{15 e^{2}} + \frac {x^{4}}{5}\right ) & \text {for}\: e^{2} \neq 0 \\\frac {x^{4} \sqrt {d^{2}}}{4} & \text {otherwise} \end {cases}\right ) - e^{4} \left (\begin {cases} \frac {d^{6} \left (\begin {cases} \frac {\log {\left (- 2 e^{2} x + 2 \sqrt {- e^{2}} \sqrt {d^{2} - e^{2} x^{2}} \right )}}{\sqrt {- e^{2}}} & \text {for}\: d^{2} \neq 0 \\\frac {x \log {\left (x \right )}}{\sqrt {- e^{2} x^{2}}} & \text {otherwise} \end {cases}\right )}{16 e^{4}} + \sqrt {d^{2} - e^{2} x^{2}} \left (- \frac {d^{4} x}{16 e^{4}} - \frac {d^{2} x^{3}}{24 e^{2}} + \frac {x^{5}}{6}\right ) & \text {for}\: e^{2} \neq 0 \\\frac {x^{5} \sqrt {d^{2}}}{5} & \text {otherwise} \end {cases}\right ) \] Input:

integrate((-e**2*x**2+d**2)**(7/2)/(e*x+d)**2,x)
 

Output:

d**4*Piecewise((d**2*Piecewise((log(-2*e**2*x + 2*sqrt(-e**2)*sqrt(d**2 - 
e**2*x**2))/sqrt(-e**2), Ne(d**2, 0)), (x*log(x)/sqrt(-e**2*x**2), True))/ 
2 + x*sqrt(d**2 - e**2*x**2)/2, Ne(e**2, 0)), (x*sqrt(d**2), True)) - 2*d* 
*3*e*Piecewise((sqrt(d**2 - e**2*x**2)*(-d**2/(3*e**2) + x**2/3), Ne(e**2, 
 0)), (x**2*sqrt(d**2)/2, True)) + 2*d*e**3*Piecewise((sqrt(d**2 - e**2*x* 
*2)*(-2*d**4/(15*e**4) - d**2*x**2/(15*e**2) + x**4/5), Ne(e**2, 0)), (x** 
4*sqrt(d**2)/4, True)) - e**4*Piecewise((d**6*Piecewise((log(-2*e**2*x + 2 
*sqrt(-e**2)*sqrt(d**2 - e**2*x**2))/sqrt(-e**2), Ne(d**2, 0)), (x*log(x)/ 
sqrt(-e**2*x**2), True))/(16*e**4) + sqrt(d**2 - e**2*x**2)*(-d**4*x/(16*e 
**4) - d**2*x**3/(24*e**2) + x**5/6), Ne(e**2, 0)), (x**5*sqrt(d**2)/5, Tr 
ue))
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.26 \[ \int \frac {\left (d^2-e^2 x^2\right )^{7/2}}{(d+e x)^2} \, dx=-\frac {7 i \, d^{6} \arcsin \left (\frac {e x}{d} + 2\right )}{16 \, e} + \frac {7}{16} \, \sqrt {e^{2} x^{2} + 4 \, d e x + 3 \, d^{2}} d^{4} x + \frac {7 \, \sqrt {e^{2} x^{2} + 4 \, d e x + 3 \, d^{2}} d^{5}}{8 \, e} + \frac {7}{24} \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} d^{2} x + \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {7}{2}}}{6 \, {\left (e^{2} x + d e\right )}} + \frac {7 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d}{30 \, e} \] Input:

integrate((-e^2*x^2+d^2)^(7/2)/(e*x+d)^2,x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

-7/16*I*d^6*arcsin(e*x/d + 2)/e + 7/16*sqrt(e^2*x^2 + 4*d*e*x + 3*d^2)*d^4 
*x + 7/8*sqrt(e^2*x^2 + 4*d*e*x + 3*d^2)*d^5/e + 7/24*(-e^2*x^2 + d^2)^(3/ 
2)*d^2*x + 1/6*(-e^2*x^2 + d^2)^(7/2)/(e^2*x + d*e) + 7/30*(-e^2*x^2 + d^2 
)^(5/2)*d/e
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 248 vs. \(2 (94) = 188\).

Time = 0.17 (sec) , antiderivative size = 248, normalized size of antiderivative = 2.25 \[ \int \frac {\left (d^2-e^2 x^2\right )^{7/2}}{(d+e x)^2} \, dx=-\frac {{\left (6720 \, d^{7} e^{7} \arctan \left (\sqrt {\frac {2 \, d}{e x + d} - 1}\right ) \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) + \frac {{\left (105 \, d^{7} e^{7} {\left (\frac {2 \, d}{e x + d} - 1\right )}^{\frac {11}{2}} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) + 595 \, d^{7} e^{7} {\left (\frac {2 \, d}{e x + d} - 1\right )}^{\frac {9}{2}} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - 1686 \, d^{7} e^{7} {\left (\frac {2 \, d}{e x + d} - 1\right )}^{\frac {7}{2}} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - 1386 \, d^{7} e^{7} {\left (\frac {2 \, d}{e x + d} - 1\right )}^{\frac {5}{2}} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - 595 \, d^{7} e^{7} {\left (\frac {2 \, d}{e x + d} - 1\right )}^{\frac {3}{2}} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - 105 \, d^{7} e^{7} \sqrt {\frac {2 \, d}{e x + d} - 1} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right )\right )} {\left (e x + d\right )}^{6}}{d^{6}}\right )} {\left | e \right |}}{7680 \, d e^{9}} \] Input:

integrate((-e^2*x^2+d^2)^(7/2)/(e*x+d)^2,x, algorithm="giac")
 

Output:

-1/7680*(6720*d^7*e^7*arctan(sqrt(2*d/(e*x + d) - 1))*sgn(1/(e*x + d))*sgn 
(e) + (105*d^7*e^7*(2*d/(e*x + d) - 1)^(11/2)*sgn(1/(e*x + d))*sgn(e) + 59 
5*d^7*e^7*(2*d/(e*x + d) - 1)^(9/2)*sgn(1/(e*x + d))*sgn(e) - 1686*d^7*e^7 
*(2*d/(e*x + d) - 1)^(7/2)*sgn(1/(e*x + d))*sgn(e) - 1386*d^7*e^7*(2*d/(e* 
x + d) - 1)^(5/2)*sgn(1/(e*x + d))*sgn(e) - 595*d^7*e^7*(2*d/(e*x + d) - 1 
)^(3/2)*sgn(1/(e*x + d))*sgn(e) - 105*d^7*e^7*sqrt(2*d/(e*x + d) - 1)*sgn( 
1/(e*x + d))*sgn(e))*(e*x + d)^6/d^6)*abs(e)/(d*e^9)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^2\right )^{7/2}}{(d+e x)^2} \, dx=\int \frac {{\left (d^2-e^2\,x^2\right )}^{7/2}}{{\left (d+e\,x\right )}^2} \,d x \] Input:

int((d^2 - e^2*x^2)^(7/2)/(d + e*x)^2,x)
 

Output:

int((d^2 - e^2*x^2)^(7/2)/(d + e*x)^2, x)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.38 \[ \int \frac {\left (d^2-e^2 x^2\right )^{7/2}}{(d+e x)^2} \, dx=\frac {105 \mathit {asin} \left (\frac {e x}{d}\right ) d^{6}+96 \sqrt {-e^{2} x^{2}+d^{2}}\, d^{5}+135 \sqrt {-e^{2} x^{2}+d^{2}}\, d^{4} e x -192 \sqrt {-e^{2} x^{2}+d^{2}}\, d^{3} e^{2} x^{2}+10 \sqrt {-e^{2} x^{2}+d^{2}}\, d^{2} e^{3} x^{3}+96 \sqrt {-e^{2} x^{2}+d^{2}}\, d \,e^{4} x^{4}-40 \sqrt {-e^{2} x^{2}+d^{2}}\, e^{5} x^{5}-96 d^{6}}{240 e} \] Input:

int((-e^2*x^2+d^2)^(7/2)/(e*x+d)^2,x)
 

Output:

(105*asin((e*x)/d)*d**6 + 96*sqrt(d**2 - e**2*x**2)*d**5 + 135*sqrt(d**2 - 
 e**2*x**2)*d**4*e*x - 192*sqrt(d**2 - e**2*x**2)*d**3*e**2*x**2 + 10*sqrt 
(d**2 - e**2*x**2)*d**2*e**3*x**3 + 96*sqrt(d**2 - e**2*x**2)*d*e**4*x**4 
- 40*sqrt(d**2 - e**2*x**2)*e**5*x**5 - 96*d**6)/(240*e)