\(\int \frac {(A+B x) \sqrt {a+b x^2}}{(d x)^{9/2}} \, dx\) [1337]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 361 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{(d x)^{9/2}} \, dx=-\frac {4 A b \sqrt {a+b x^2}}{21 a d^3 (d x)^{3/2}}-\frac {4 b B \sqrt {a+b x^2}}{5 a d^4 \sqrt {d x}}+\frac {4 b^{3/2} B \sqrt {d x} \sqrt {a+b x^2}}{5 a d^5 \left (\sqrt {a}+\sqrt {b} x\right )}-\frac {2 (5 A+7 B x) \sqrt {a+b x^2}}{35 d (d x)^{7/2}}-\frac {4 b^{5/4} B \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )|\frac {1}{2}\right )}{5 a^{3/4} d^{9/2} \sqrt {a+b x^2}}-\frac {2 b^{5/4} \left (5 A \sqrt {b}-21 \sqrt {a} B\right ) \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right ),\frac {1}{2}\right )}{105 a^{5/4} d^{9/2} \sqrt {a+b x^2}} \] Output:

-4/21*A*b*(b*x^2+a)^(1/2)/a/d^3/(d*x)^(3/2)-4/5*b*B*(b*x^2+a)^(1/2)/a/d^4/ 
(d*x)^(1/2)+4/5*b^(3/2)*B*(d*x)^(1/2)*(b*x^2+a)^(1/2)/a/d^5/(a^(1/2)+b^(1/ 
2)*x)-2/35*(7*B*x+5*A)*(b*x^2+a)^(1/2)/d/(d*x)^(7/2)-4/5*b^(5/4)*B*(a^(1/2 
)+b^(1/2)*x)*((b*x^2+a)/(a^(1/2)+b^(1/2)*x)^2)^(1/2)*EllipticE(sin(2*arcta 
n(b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))),1/2*2^(1/2))/a^(3/4)/d^(9/2)/(b*x^ 
2+a)^(1/2)-2/105*b^(5/4)*(5*A*b^(1/2)-21*a^(1/2)*B)*(a^(1/2)+b^(1/2)*x)*(( 
b*x^2+a)/(a^(1/2)+b^(1/2)*x)^2)^(1/2)*InverseJacobiAM(2*arctan(b^(1/4)*(d* 
x)^(1/2)/a^(1/4)/d^(1/2)),1/2*2^(1/2))/a^(5/4)/d^(9/2)/(b*x^2+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.24 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{(d x)^{9/2}} \, dx=-\frac {2 \sqrt {d x} \sqrt {a+b x^2} \left (5 A \operatorname {Hypergeometric2F1}\left (-\frac {7}{4},-\frac {1}{2},-\frac {3}{4},-\frac {b x^2}{a}\right )+7 B x \operatorname {Hypergeometric2F1}\left (-\frac {5}{4},-\frac {1}{2},-\frac {1}{4},-\frac {b x^2}{a}\right )\right )}{35 d^5 x^4 \sqrt {1+\frac {b x^2}{a}}} \] Input:

Integrate[((A + B*x)*Sqrt[a + b*x^2])/(d*x)^(9/2),x]
 

Output:

(-2*Sqrt[d*x]*Sqrt[a + b*x^2]*(5*A*Hypergeometric2F1[-7/4, -1/2, -3/4, -(( 
b*x^2)/a)] + 7*B*x*Hypergeometric2F1[-5/4, -1/2, -1/4, -((b*x^2)/a)]))/(35 
*d^5*x^4*Sqrt[1 + (b*x^2)/a])
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 358, normalized size of antiderivative = 0.99, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {546, 27, 553, 27, 553, 27, 556, 555, 1512, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x^2} (A+B x)}{(d x)^{9/2}} \, dx\)

\(\Big \downarrow \) 546

\(\displaystyle -\frac {4 b \int -\frac {5 A+7 B x}{2 (d x)^{5/2} \sqrt {b x^2+a}}dx}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 b \int \frac {5 A+7 B x}{(d x)^{5/2} \sqrt {b x^2+a}}dx}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 553

\(\displaystyle \frac {2 b \left (-\frac {2 \int -\frac {21 a B-5 A b x}{2 (d x)^{3/2} \sqrt {b x^2+a}}dx}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 b \left (\frac {\int \frac {21 a B-5 A b x}{(d x)^{3/2} \sqrt {b x^2+a}}dx}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 553

\(\displaystyle \frac {2 b \left (\frac {-\frac {2 \int \frac {a b (5 A-21 B x)}{2 \sqrt {d x} \sqrt {b x^2+a}}dx}{a d}-\frac {42 B \sqrt {a+b x^2}}{d \sqrt {d x}}}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 b \left (\frac {-\frac {b \int \frac {5 A-21 B x}{\sqrt {d x} \sqrt {b x^2+a}}dx}{d}-\frac {42 B \sqrt {a+b x^2}}{d \sqrt {d x}}}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 556

\(\displaystyle \frac {2 b \left (\frac {-\frac {b \sqrt {x} \int \frac {5 A-21 B x}{\sqrt {x} \sqrt {b x^2+a}}dx}{d \sqrt {d x}}-\frac {42 B \sqrt {a+b x^2}}{d \sqrt {d x}}}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 555

\(\displaystyle \frac {2 b \left (\frac {-\frac {2 b \sqrt {x} \int \frac {5 A-21 B x}{\sqrt {b x^2+a}}d\sqrt {x}}{d \sqrt {d x}}-\frac {42 B \sqrt {a+b x^2}}{d \sqrt {d x}}}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 1512

\(\displaystyle \frac {2 b \left (\frac {-\frac {2 b \sqrt {x} \left (\left (5 A-\frac {21 \sqrt {a} B}{\sqrt {b}}\right ) \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {x}+\frac {21 \sqrt {a} B \int \frac {\sqrt {a}-\sqrt {b} x}{\sqrt {a} \sqrt {b x^2+a}}d\sqrt {x}}{\sqrt {b}}\right )}{d \sqrt {d x}}-\frac {42 B \sqrt {a+b x^2}}{d \sqrt {d x}}}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 b \left (\frac {-\frac {2 b \sqrt {x} \left (\left (5 A-\frac {21 \sqrt {a} B}{\sqrt {b}}\right ) \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {x}+\frac {21 B \int \frac {\sqrt {a}-\sqrt {b} x}{\sqrt {b x^2+a}}d\sqrt {x}}{\sqrt {b}}\right )}{d \sqrt {d x}}-\frac {42 B \sqrt {a+b x^2}}{d \sqrt {d x}}}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {2 b \left (\frac {-\frac {2 b \sqrt {x} \left (\frac {21 B \int \frac {\sqrt {a}-\sqrt {b} x}{\sqrt {b x^2+a}}d\sqrt {x}}{\sqrt {b}}+\frac {\left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \left (5 A-\frac {21 \sqrt {a} B}{\sqrt {b}}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} \sqrt {a+b x^2}}\right )}{d \sqrt {d x}}-\frac {42 B \sqrt {a+b x^2}}{d \sqrt {d x}}}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {2 b \left (\frac {-\frac {2 b \sqrt {x} \left (\frac {\left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \left (5 A-\frac {21 \sqrt {a} B}{\sqrt {b}}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} \sqrt {a+b x^2}}+\frac {21 B \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{b} \sqrt {a+b x^2}}-\frac {\sqrt {x} \sqrt {a+b x^2}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt {b}}\right )}{d \sqrt {d x}}-\frac {42 B \sqrt {a+b x^2}}{d \sqrt {d x}}}{3 a d}-\frac {10 A \sqrt {a+b x^2}}{3 a d (d x)^{3/2}}\right )}{35 d^2}-\frac {2 \sqrt {a+b x^2} (5 A+7 B x)}{35 d (d x)^{7/2}}\)

Input:

Int[((A + B*x)*Sqrt[a + b*x^2])/(d*x)^(9/2),x]
 

Output:

(-2*(5*A + 7*B*x)*Sqrt[a + b*x^2])/(35*d*(d*x)^(7/2)) + (2*b*((-10*A*Sqrt[ 
a + b*x^2])/(3*a*d*(d*x)^(3/2)) + ((-42*B*Sqrt[a + b*x^2])/(d*Sqrt[d*x]) - 
 (2*b*Sqrt[x]*((21*B*(-((Sqrt[x]*Sqrt[a + b*x^2])/(Sqrt[a] + Sqrt[b]*x)) + 
 (a^(1/4)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]* 
EllipticE[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(b^(1/4)*Sqrt[a + b*x 
^2])))/Sqrt[b] + ((5*A - (21*Sqrt[a]*B)/Sqrt[b])*(Sqrt[a] + Sqrt[b]*x)*Sqr 
t[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x] 
)/a^(1/4)], 1/2])/(2*a^(1/4)*b^(1/4)*Sqrt[a + b*x^2])))/(d*Sqrt[d*x]))/(3* 
a*d)))/(35*d^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 546
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[(e*x)^(m + 1)*(c*(m + 2) + d*(m + 1)*x)*((a + b*x^2)^p/(e*(m + 
 1)*(m + 2))), x] - Simp[2*b*(p/(e^2*(m + 1)*(m + 2)))   Int[(e*x)^(m + 2)* 
(a + b*x^2)^(p - 1)*(c*(m + 2) + d*(m + 1)*x), x], x] /; FreeQ[{a, b, c, d, 
 e}, x] && GtQ[p, 0] && LtQ[m, -2] &&  !ILtQ[m + 2*p + 3, 0]
 

rule 553
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[c*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] + Simp 
[1/(a*e*(m + 1))   Int[(e*x)^(m + 1)*(a + b*x^2)^p*(a*d*(m + 1) - b*c*(m + 
2*p + 3)*x), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && LtQ[m, -1]
 

rule 555
Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> 
Simp[2   Subst[Int[(f + g*x^2)/Sqrt[a + c*x^4], x], x, Sqrt[x]], x] /; Free 
Q[{a, c, f, g}, x]
 

rule 556
Int[((c_) + (d_.)*(x_))/(Sqrt[(e_)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symb 
ol] :> Simp[Sqrt[x]/Sqrt[e*x]   Int[(c + d*x)/(Sqrt[x]*Sqrt[a + b*x^2]), x] 
, x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1512
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + c*x^4], x], x] - Simp[e/q 
 Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a, c 
, d, e}, x] && PosQ[c/a]
 
Maple [A] (verified)

Time = 1.06 (sec) , antiderivative size = 340, normalized size of antiderivative = 0.94

method result size
default \(-\frac {2 \left (5 A \sqrt {2}\, \sqrt {-a b}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) b \,x^{3}+21 B \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b \,x^{3}-42 B \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticE}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b \,x^{3}+42 B \,b^{2} x^{5}+10 b^{2} A \,x^{4}+63 a b B \,x^{3}+25 a b A \,x^{2}+21 a^{2} B x +15 a^{2} A \right )}{105 x^{3} \sqrt {b \,x^{2}+a}\, d^{4} \sqrt {d x}\, a}\) \(340\)
risch \(-\frac {2 \sqrt {b \,x^{2}+a}\, \left (42 B b \,x^{3}+10 A b \,x^{2}+21 B a x +15 A a \right )}{105 x^{3} a \,d^{4} \sqrt {d x}}-\frac {2 b^{2} \left (\frac {5 A \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b \sqrt {b d \,x^{3}+a d x}}-\frac {21 B \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{b \sqrt {b d \,x^{3}+a d x}}\right ) \sqrt {d \left (b \,x^{2}+a \right ) x}}{105 a \,d^{4} \sqrt {d x}\, \sqrt {b \,x^{2}+a}}\) \(361\)
elliptic \(\frac {\sqrt {d \left (b \,x^{2}+a \right ) x}\, \left (-\frac {2 A \sqrt {b d \,x^{3}+a d x}}{7 d^{5} x^{4}}-\frac {2 B \sqrt {b d \,x^{3}+a d x}}{5 d^{5} x^{3}}-\frac {4 A b \sqrt {b d \,x^{3}+a d x}}{21 a \,d^{5} x^{2}}-\frac {4 \left (b d \,x^{2}+a d \right ) B b}{5 a \,d^{5} \sqrt {x \left (b d \,x^{2}+a d \right )}}-\frac {2 A b \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{21 a \,d^{4} \sqrt {b d \,x^{3}+a d x}}+\frac {2 B b \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{5 a \,d^{4} \sqrt {b d \,x^{3}+a d x}}\right )}{\sqrt {d x}\, \sqrt {b \,x^{2}+a}}\) \(413\)

Input:

int((B*x+A)*(b*x^2+a)^(1/2)/(d*x)^(9/2),x,method=_RETURNVERBOSE)
 

Output:

-2/105/x^3*(5*A*2^(1/2)*(-a*b)^(1/2)*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/ 
2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)*El 
lipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*b*x^3+21*B*2^ 
(1/2)*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^ 
(1/2))^(1/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a 
*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b*x^3-42*B*2^(1/2)*((b*x+(-a*b)^(1/2))/(-a 
*b)^(1/2))^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-1/(-a*b)^(1/2) 
*b*x)^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2)) 
*a*b*x^3+42*B*b^2*x^5+10*b^2*A*x^4+63*a*b*B*x^3+25*a*b*A*x^2+21*a^2*B*x+15 
*a^2*A)/(b*x^2+a)^(1/2)/d^4/(d*x)^(1/2)/a
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.28 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{(d x)^{9/2}} \, dx=-\frac {2 \, {\left (10 \, \sqrt {b d} A b x^{4} {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right ) + 42 \, \sqrt {b d} B b x^{4} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right ) + {\left (42 \, B b x^{3} + 10 \, A b x^{2} + 21 \, B a x + 15 \, A a\right )} \sqrt {b x^{2} + a} \sqrt {d x}\right )}}{105 \, a d^{5} x^{4}} \] Input:

integrate((B*x+A)*(b*x^2+a)^(1/2)/(d*x)^(9/2),x, algorithm="fricas")
 

Output:

-2/105*(10*sqrt(b*d)*A*b*x^4*weierstrassPInverse(-4*a/b, 0, x) + 42*sqrt(b 
*d)*B*b*x^4*weierstrassZeta(-4*a/b, 0, weierstrassPInverse(-4*a/b, 0, x)) 
+ (42*B*b*x^3 + 10*A*b*x^2 + 21*B*a*x + 15*A*a)*sqrt(b*x^2 + a)*sqrt(d*x)) 
/(a*d^5*x^4)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 39.06 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.30 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{(d x)^{9/2}} \, dx=\frac {A \sqrt {a} \Gamma \left (- \frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {7}{4}, - \frac {1}{2} \\ - \frac {3}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 d^{\frac {9}{2}} x^{\frac {7}{2}} \Gamma \left (- \frac {3}{4}\right )} + \frac {B \sqrt {a} \Gamma \left (- \frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{4}, - \frac {1}{2} \\ - \frac {1}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 d^{\frac {9}{2}} x^{\frac {5}{2}} \Gamma \left (- \frac {1}{4}\right )} \] Input:

integrate((B*x+A)*(b*x**2+a)**(1/2)/(d*x)**(9/2),x)
 

Output:

A*sqrt(a)*gamma(-7/4)*hyper((-7/4, -1/2), (-3/4,), b*x**2*exp_polar(I*pi)/ 
a)/(2*d**(9/2)*x**(7/2)*gamma(-3/4)) + B*sqrt(a)*gamma(-5/4)*hyper((-5/4, 
-1/2), (-1/4,), b*x**2*exp_polar(I*pi)/a)/(2*d**(9/2)*x**(5/2)*gamma(-1/4) 
)
 

Maxima [F]

\[ \int \frac {(A+B x) \sqrt {a+b x^2}}{(d x)^{9/2}} \, dx=\int { \frac {\sqrt {b x^{2} + a} {\left (B x + A\right )}}{\left (d x\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((B*x+A)*(b*x^2+a)^(1/2)/(d*x)^(9/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*x^2 + a)*(B*x + A)/(d*x)^(9/2), x)
 

Giac [F]

\[ \int \frac {(A+B x) \sqrt {a+b x^2}}{(d x)^{9/2}} \, dx=\int { \frac {\sqrt {b x^{2} + a} {\left (B x + A\right )}}{\left (d x\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((B*x+A)*(b*x^2+a)^(1/2)/(d*x)^(9/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*x^2 + a)*(B*x + A)/(d*x)^(9/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{(d x)^{9/2}} \, dx=\int \frac {\sqrt {b\,x^2+a}\,\left (A+B\,x\right )}{{\left (d\,x\right )}^{9/2}} \,d x \] Input:

int(((a + b*x^2)^(1/2)*(A + B*x))/(d*x)^(9/2),x)
 

Output:

int(((a + b*x^2)^(1/2)*(A + B*x))/(d*x)^(9/2), x)
 

Reduce [F]

\[ \int \frac {(A+B x) \sqrt {a+b x^2}}{(d x)^{9/2}} \, dx=\frac {2 \sqrt {d}\, \left (-3 \sqrt {b \,x^{2}+a}\, a -5 \sqrt {b \,x^{2}+a}\, b x -3 \sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b \,x^{7}+a \,x^{5}}d x \right ) a^{2} x^{3}-5 \sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b \,x^{6}+a \,x^{4}}d x \right ) a b \,x^{3}\right )}{15 \sqrt {x}\, d^{5} x^{3}} \] Input:

int((B*x+A)*(b*x^2+a)^(1/2)/(d*x)^(9/2),x)
 

Output:

(2*sqrt(d)*( - 3*sqrt(a + b*x**2)*a - 5*sqrt(a + b*x**2)*b*x - 3*sqrt(x)*i 
nt((sqrt(x)*sqrt(a + b*x**2))/(a*x**5 + b*x**7),x)*a**2*x**3 - 5*sqrt(x)*i 
nt((sqrt(x)*sqrt(a + b*x**2))/(a*x**4 + b*x**6),x)*a*b*x**3))/(15*sqrt(x)* 
d**5*x**3)