\(\int \frac {\sqrt {e x}}{(c+d x) \sqrt {a+b x^2}} \, dx\) [1388]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 373 \[ \int \frac {\sqrt {e x}}{(c+d x) \sqrt {a+b x^2}} \, dx=-\frac {\sqrt {c} \sqrt {e} \arctan \left (\frac {\sqrt {b c^2+a d^2} \sqrt {e x}}{\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a+b x^2}}\right )}{\sqrt {d} \sqrt {b c^2+a d^2}}-\frac {\sqrt [4]{a} \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{\sqrt [4]{b} \left (\sqrt {b} c-\sqrt {a} d\right ) \sqrt {a+b x^2}}+\frac {\left (\sqrt {b} c+\sqrt {a} d\right ) \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} c-\sqrt {a} d\right )^2}{4 \sqrt {a} \sqrt {b} c d},2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} d \left (\sqrt {b} c-\sqrt {a} d\right ) \sqrt {a+b x^2}} \] Output:

-c^(1/2)*e^(1/2)*arctan((a*d^2+b*c^2)^(1/2)*(e*x)^(1/2)/c^(1/2)/d^(1/2)/e^ 
(1/2)/(b*x^2+a)^(1/2))/d^(1/2)/(a*d^2+b*c^2)^(1/2)-a^(1/4)*e^(1/2)*(a^(1/2 
)+b^(1/2)*x)*((b*x^2+a)/(a^(1/2)+b^(1/2)*x)^2)^(1/2)*InverseJacobiAM(2*arc 
tan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)),1/2*2^(1/2))/b^(1/4)/(b^(1/2)*c-a 
^(1/2)*d)/(b*x^2+a)^(1/2)+1/2*(b^(1/2)*c+a^(1/2)*d)*e^(1/2)*(a^(1/2)+b^(1/ 
2)*x)*((b*x^2+a)/(a^(1/2)+b^(1/2)*x)^2)^(1/2)*EllipticPi(sin(2*arctan(b^(1 
/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),-1/4*(b^(1/2)*c-a^(1/2)*d)^2/a^(1/2)/b^( 
1/2)/c/d,1/2*2^(1/2))/a^(1/4)/b^(1/4)/d/(b^(1/2)*c-a^(1/2)*d)/(b*x^2+a)^(1 
/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 21.54 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.35 \[ \int \frac {\sqrt {e x}}{(c+d x) \sqrt {a+b x^2}} \, dx=-\frac {2 i \sqrt {e x} \sqrt {1+\frac {b x^2}{a}} \left (\operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {i \sqrt {b} x}{\sqrt {a}}}\right ),-1\right )-\operatorname {EllipticPi}\left (-\frac {i \sqrt {a} d}{\sqrt {b} c},i \text {arcsinh}\left (\sqrt {\frac {i \sqrt {b} x}{\sqrt {a}}}\right ),-1\right )\right )}{d \sqrt {\frac {i \sqrt {b} x}{\sqrt {a}}} \sqrt {a+b x^2}} \] Input:

Integrate[Sqrt[e*x]/((c + d*x)*Sqrt[a + b*x^2]),x]
 

Output:

((-2*I)*Sqrt[e*x]*Sqrt[1 + (b*x^2)/a]*(EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b] 
*x)/Sqrt[a]]], -1] - EllipticPi[((-I)*Sqrt[a]*d)/(Sqrt[b]*c), I*ArcSinh[Sq 
rt[(I*Sqrt[b]*x)/Sqrt[a]]], -1]))/(d*Sqrt[(I*Sqrt[b]*x)/Sqrt[a]]*Sqrt[a + 
b*x^2])
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 427, normalized size of antiderivative = 1.14, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {616, 27, 1657, 27, 761, 2221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {e x}}{\sqrt {a+b x^2} (c+d x)} \, dx\)

\(\Big \downarrow \) 616

\(\displaystyle \frac {2 \int \frac {e^2 x}{(c e+d x e) \sqrt {b x^2+a}}d\sqrt {e x}}{e}\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \int \frac {e x}{(c e+d x e) \sqrt {b x^2+a}}d\sqrt {e x}\)

\(\Big \downarrow \) 1657

\(\displaystyle 2 \left (\frac {\sqrt {a} c e \int \frac {\sqrt {b} x e+\sqrt {a} e}{\sqrt {a} e (c e+d x e) \sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b} c-\sqrt {a} d}-\frac {\sqrt {a} \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b} c-\sqrt {a} d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {c \int \frac {\sqrt {b} x e+\sqrt {a} e}{(c e+d x e) \sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b} c-\sqrt {a} d}-\frac {\sqrt {a} \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b} c-\sqrt {a} d}\right )\)

\(\Big \downarrow \) 761

\(\displaystyle 2 \left (\frac {c \int \frac {\sqrt {b} x e+\sqrt {a} e}{(c e+d x e) \sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b} c-\sqrt {a} d}-\frac {\sqrt [4]{a} \left (\sqrt {a} e+\sqrt {b} e x\right ) \sqrt {\frac {a e^2+b e^2 x^2}{\left (\sqrt {a} e+\sqrt {b} e x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{b} \sqrt {e} \sqrt {a+b x^2} \left (\sqrt {b} c-\sqrt {a} d\right )}\right )\)

\(\Big \downarrow \) 2221

\(\displaystyle 2 \left (\frac {c \left (\frac {\left (\sqrt {a} d+\sqrt {b} c\right ) \left (\sqrt {a} e+\sqrt {b} e x\right ) \sqrt {\frac {a e^2+b e^2 x^2}{\left (\sqrt {a} e+\sqrt {b} e x\right )^2}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right )^2}{4 \sqrt {b} c d},2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} \sqrt [4]{b} c d \sqrt {e} \sqrt {a+b x^2}}-\frac {\sqrt {e} \left (\sqrt {b} c-\sqrt {a} d\right ) \arctan \left (\frac {\sqrt {e x} \sqrt {a d^2+b c^2}}{\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a+b x^2}}\right )}{2 \sqrt {c} \sqrt {d} \sqrt {a d^2+b c^2}}\right )}{\sqrt {b} c-\sqrt {a} d}-\frac {\sqrt [4]{a} \left (\sqrt {a} e+\sqrt {b} e x\right ) \sqrt {\frac {a e^2+b e^2 x^2}{\left (\sqrt {a} e+\sqrt {b} e x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{b} \sqrt {e} \sqrt {a+b x^2} \left (\sqrt {b} c-\sqrt {a} d\right )}\right )\)

Input:

Int[Sqrt[e*x]/((c + d*x)*Sqrt[a + b*x^2]),x]
 

Output:

2*(-1/2*(a^(1/4)*(Sqrt[a]*e + Sqrt[b]*e*x)*Sqrt[(a*e^2 + b*e^2*x^2)/(Sqrt[ 
a]*e + Sqrt[b]*e*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqr 
t[e])], 1/2])/(b^(1/4)*(Sqrt[b]*c - Sqrt[a]*d)*Sqrt[e]*Sqrt[a + b*x^2]) + 
(c*(-1/2*((Sqrt[b]*c - Sqrt[a]*d)*Sqrt[e]*ArcTan[(Sqrt[b*c^2 + a*d^2]*Sqrt 
[e*x])/(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a + b*x^2])])/(Sqrt[c]*Sqrt[d]*Sqrt[b 
*c^2 + a*d^2]) + ((Sqrt[b]*c + Sqrt[a]*d)*(Sqrt[a]*e + Sqrt[b]*e*x)*Sqrt[( 
a*e^2 + b*e^2*x^2)/(Sqrt[a]*e + Sqrt[b]*e*x)^2]*EllipticPi[-1/4*(Sqrt[a]*( 
(Sqrt[b]*c)/Sqrt[a] - d)^2)/(Sqrt[b]*c*d), 2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a 
^(1/4)*Sqrt[e])], 1/2])/(4*a^(1/4)*b^(1/4)*c*d*Sqrt[e]*Sqrt[a + b*x^2])))/ 
(Sqrt[b]*c - Sqrt[a]*d))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 616
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*(m + 1) - 
 1)*(c + d*(x^k/e))^n*(a + b*(x^(2*k)/e^2))^p, x], x, (e*x)^(1/k)], x]] /; 
FreeQ[{a, b, c, d, e, p}, x] && ILtQ[n, 0] && FractionQ[m]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1657
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> 
With[{q = Rt[c/a, 2]}, Simp[(-a)*((e + d*q)/(c*d^2 - a*e^2))   Int[1/Sqrt[a 
 + c*x^4], x], x] + Simp[a*d*((e + d*q)/(c*d^2 - a*e^2))   Int[(1 + q*x^2)/ 
((d + e*x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/ 
a] && NeQ[c*d^2 - a*e^2, 0]
 

rule 2221
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[c*(d/e 
) + a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[c*(d/e) + a*(e/d), 2])), x] 
+ Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4* 
d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x 
], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && Po 
sQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && PosQ[c*(d/e) + a*(e/d)]
 
Maple [A] (verified)

Time = 0.77 (sec) , antiderivative size = 215, normalized size of antiderivative = 0.58

method result size
default \(\frac {\left (\operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) b c -\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) d -\operatorname {EllipticPi}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {-a b}\, d}{\sqrt {-a b}\, d -b c}, \frac {\sqrt {2}}{2}\right ) b c \right ) \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-a b}\, \sqrt {2}\, \sqrt {e x}}{\sqrt {b \,x^{2}+a}\, d b \left (b c -\sqrt {-a b}\, d \right ) x}\) \(215\)
elliptic \(\frac {\sqrt {e x}\, \sqrt {\left (b \,x^{2}+a \right ) e x}\, \left (\frac {e \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{d b \sqrt {b e \,x^{3}+a e x}}-\frac {c e \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticPi}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, -\frac {\sqrt {-a b}}{b \left (-\frac {\sqrt {-a b}}{b}+\frac {c}{d}\right )}, \frac {\sqrt {2}}{2}\right )}{d^{2} b \sqrt {b e \,x^{3}+a e x}\, \left (-\frac {\sqrt {-a b}}{b}+\frac {c}{d}\right )}\right )}{e x \sqrt {b \,x^{2}+a}}\) \(312\)

Input:

int((e*x)^(1/2)/(d*x+c)/(b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

(EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*b*c-(-a*b) 
^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*d-El 
lipticPi(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),(-a*b)^(1/2)*d/((-a*b)^(1 
/2)*d-b*c),1/2*2^(1/2))*b*c)*(-1/(-a*b)^(1/2)*b*x)^(1/2)*((-b*x+(-a*b)^(1/ 
2))/(-a*b)^(1/2))^(1/2)*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-a*b)^(1/ 
2)*2^(1/2)*(e*x)^(1/2)/(b*x^2+a)^(1/2)/d/b/(b*c-(-a*b)^(1/2)*d)/x
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {e x}}{(c+d x) \sqrt {a+b x^2}} \, dx=\text {Timed out} \] Input:

integrate((e*x)^(1/2)/(d*x+c)/(b*x^2+a)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\sqrt {e x}}{(c+d x) \sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {e x}}{\sqrt {a + b x^{2}} \left (c + d x\right )}\, dx \] Input:

integrate((e*x)**(1/2)/(d*x+c)/(b*x**2+a)**(1/2),x)
 

Output:

Integral(sqrt(e*x)/(sqrt(a + b*x**2)*(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {e x}}{(c+d x) \sqrt {a+b x^2}} \, dx=\int { \frac {\sqrt {e x}}{\sqrt {b x^{2} + a} {\left (d x + c\right )}} \,d x } \] Input:

integrate((e*x)^(1/2)/(d*x+c)/(b*x^2+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(e*x)/(sqrt(b*x^2 + a)*(d*x + c)), x)
 

Giac [F]

\[ \int \frac {\sqrt {e x}}{(c+d x) \sqrt {a+b x^2}} \, dx=\int { \frac {\sqrt {e x}}{\sqrt {b x^{2} + a} {\left (d x + c\right )}} \,d x } \] Input:

integrate((e*x)^(1/2)/(d*x+c)/(b*x^2+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(e*x)/(sqrt(b*x^2 + a)*(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {e x}}{(c+d x) \sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {e\,x}}{\sqrt {b\,x^2+a}\,\left (c+d\,x\right )} \,d x \] Input:

int((e*x)^(1/2)/((a + b*x^2)^(1/2)*(c + d*x)),x)
 

Output:

int((e*x)^(1/2)/((a + b*x^2)^(1/2)*(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {e x}}{(c+d x) \sqrt {a+b x^2}} \, dx=\sqrt {e}\, \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b d \,x^{3}+b c \,x^{2}+a d x +a c}d x \right ) \] Input:

int((e*x)^(1/2)/(d*x+c)/(b*x^2+a)^(1/2),x)
 

Output:

sqrt(e)*int((sqrt(x)*sqrt(a + b*x**2))/(a*c + a*d*x + b*c*x**2 + b*d*x**3) 
,x)