\(\int \frac {(d x)^{5/2} (A+B x)}{(a+b x^2)^{5/2}} \, dx\) [1426]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 340 \[ \int \frac {(d x)^{5/2} (A+B x)}{\left (a+b x^2\right )^{5/2}} \, dx=-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}-\frac {d^2 \sqrt {d x} (5 a B-3 A b x)}{6 a b^2 \sqrt {a+b x^2}}-\frac {A d^2 \sqrt {d x} \sqrt {a+b x^2}}{2 a b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {A d^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{7/4} \sqrt {a+b x^2}}-\frac {\left (3 A \sqrt {b}-5 \sqrt {a} B\right ) d^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right ),\frac {1}{2}\right )}{12 a^{3/4} b^{9/4} \sqrt {a+b x^2}} \] Output:

-1/3*d*(d*x)^(3/2)*(B*x+A)/b/(b*x^2+a)^(3/2)-1/6*d^2*(d*x)^(1/2)*(-3*A*b*x 
+5*B*a)/a/b^2/(b*x^2+a)^(1/2)-1/2*A*d^2*(d*x)^(1/2)*(b*x^2+a)^(1/2)/a/b^(3 
/2)/(a^(1/2)+b^(1/2)*x)+1/2*A*d^(5/2)*(a^(1/2)+b^(1/2)*x)*((b*x^2+a)/(a^(1 
/2)+b^(1/2)*x)^2)^(1/2)*EllipticE(sin(2*arctan(b^(1/4)*(d*x)^(1/2)/a^(1/4) 
/d^(1/2))),1/2*2^(1/2))/a^(3/4)/b^(7/4)/(b*x^2+a)^(1/2)-1/12*(3*A*b^(1/2)- 
5*a^(1/2)*B)*d^(5/2)*(a^(1/2)+b^(1/2)*x)*((b*x^2+a)/(a^(1/2)+b^(1/2)*x)^2) 
^(1/2)*InverseJacobiAM(2*arctan(b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2)),1/2*2 
^(1/2))/a^(3/4)/b^(9/4)/(b*x^2+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.10 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.44 \[ \int \frac {(d x)^{5/2} (A+B x)}{\left (a+b x^2\right )^{5/2}} \, dx=-\frac {d^2 \sqrt {d x} \left (5 a^2 B-a A b x+7 a b B x^2-3 A b^2 x^3-5 a B \left (a+b x^2\right ) \sqrt {1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {b x^2}{a}\right )+A b x \left (a+b x^2\right ) \sqrt {1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {b x^2}{a}\right )\right )}{6 a b^2 \left (a+b x^2\right )^{3/2}} \] Input:

Integrate[((d*x)^(5/2)*(A + B*x))/(a + b*x^2)^(5/2),x]
 

Output:

-1/6*(d^2*Sqrt[d*x]*(5*a^2*B - a*A*b*x + 7*a*b*B*x^2 - 3*A*b^2*x^3 - 5*a*B 
*(a + b*x^2)*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^2 
)/a)] + A*b*x*(a + b*x^2)*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/2, 3/4, 
7/4, -((b*x^2)/a)]))/(a*b^2*(a + b*x^2)^(3/2))
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 332, normalized size of antiderivative = 0.98, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {549, 27, 550, 27, 556, 555, 1512, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d x)^{5/2} (A+B x)}{\left (a+b x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 549

\(\displaystyle \frac {d^2 \int \frac {\sqrt {d x} (3 A+5 B x)}{2 \left (b x^2+a\right )^{3/2}}dx}{3 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d^2 \int \frac {\sqrt {d x} (3 A+5 B x)}{\left (b x^2+a\right )^{3/2}}dx}{6 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 550

\(\displaystyle \frac {d^2 \left (\frac {d \int \frac {5 a B-3 A b x}{2 \sqrt {d x} \sqrt {b x^2+a}}dx}{a b}-\frac {\sqrt {d x} (5 a B-3 A b x)}{a b \sqrt {a+b x^2}}\right )}{6 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d^2 \left (\frac {d \int \frac {5 a B-3 A b x}{\sqrt {d x} \sqrt {b x^2+a}}dx}{2 a b}-\frac {\sqrt {d x} (5 a B-3 A b x)}{a b \sqrt {a+b x^2}}\right )}{6 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 556

\(\displaystyle \frac {d^2 \left (\frac {d \sqrt {x} \int \frac {5 a B-3 A b x}{\sqrt {x} \sqrt {b x^2+a}}dx}{2 a b \sqrt {d x}}-\frac {\sqrt {d x} (5 a B-3 A b x)}{a b \sqrt {a+b x^2}}\right )}{6 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 555

\(\displaystyle \frac {d^2 \left (\frac {d \sqrt {x} \int \frac {5 a B-3 A b x}{\sqrt {b x^2+a}}d\sqrt {x}}{a b \sqrt {d x}}-\frac {\sqrt {d x} (5 a B-3 A b x)}{a b \sqrt {a+b x^2}}\right )}{6 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 1512

\(\displaystyle \frac {d^2 \left (\frac {d \sqrt {x} \left (3 \sqrt {a} A \sqrt {b} \int \frac {\sqrt {a}-\sqrt {b} x}{\sqrt {a} \sqrt {b x^2+a}}d\sqrt {x}-\sqrt {a} \left (3 A \sqrt {b}-5 \sqrt {a} B\right ) \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {x}\right )}{a b \sqrt {d x}}-\frac {\sqrt {d x} (5 a B-3 A b x)}{a b \sqrt {a+b x^2}}\right )}{6 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d^2 \left (\frac {d \sqrt {x} \left (3 A \sqrt {b} \int \frac {\sqrt {a}-\sqrt {b} x}{\sqrt {b x^2+a}}d\sqrt {x}-\sqrt {a} \left (3 A \sqrt {b}-5 \sqrt {a} B\right ) \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {x}\right )}{a b \sqrt {d x}}-\frac {\sqrt {d x} (5 a B-3 A b x)}{a b \sqrt {a+b x^2}}\right )}{6 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {d^2 \left (\frac {d \sqrt {x} \left (3 A \sqrt {b} \int \frac {\sqrt {a}-\sqrt {b} x}{\sqrt {b x^2+a}}d\sqrt {x}-\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \left (3 A \sqrt {b}-5 \sqrt {a} B\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{b} \sqrt {a+b x^2}}\right )}{a b \sqrt {d x}}-\frac {\sqrt {d x} (5 a B-3 A b x)}{a b \sqrt {a+b x^2}}\right )}{6 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {d^2 \left (\frac {d \sqrt {x} \left (3 A \sqrt {b} \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{b} \sqrt {a+b x^2}}-\frac {\sqrt {x} \sqrt {a+b x^2}}{\sqrt {a}+\sqrt {b} x}\right )-\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \left (3 A \sqrt {b}-5 \sqrt {a} B\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{b} \sqrt {a+b x^2}}\right )}{a b \sqrt {d x}}-\frac {\sqrt {d x} (5 a B-3 A b x)}{a b \sqrt {a+b x^2}}\right )}{6 b}-\frac {d (d x)^{3/2} (A+B x)}{3 b \left (a+b x^2\right )^{3/2}}\)

Input:

Int[((d*x)^(5/2)*(A + B*x))/(a + b*x^2)^(5/2),x]
 

Output:

-1/3*(d*(d*x)^(3/2)*(A + B*x))/(b*(a + b*x^2)^(3/2)) + (d^2*(-((Sqrt[d*x]* 
(5*a*B - 3*A*b*x))/(a*b*Sqrt[a + b*x^2])) + (d*Sqrt[x]*(3*A*Sqrt[b]*(-((Sq 
rt[x]*Sqrt[a + b*x^2])/(Sqrt[a] + Sqrt[b]*x)) + (a^(1/4)*(Sqrt[a] + Sqrt[b 
]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4) 
*Sqrt[x])/a^(1/4)], 1/2])/(b^(1/4)*Sqrt[a + b*x^2])) - (a^(1/4)*(3*A*Sqrt[ 
b] - 5*Sqrt[a]*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b 
]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(2*b^(1/4)*Sq 
rt[a + b*x^2])))/(a*b*Sqrt[d*x])))/(6*b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 549
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[e*(e*x)^(m - 1)*(c + d*x)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), 
 x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(c*(m - 1) + d*m*x)*(a + b 
*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[p, -1] && GtQ[m, 
1]
 

rule 550
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[(e*x)^m*(a*d - b*c*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x 
] - Simp[e/(2*a*b*(p + 1))   Int[(e*x)^(m - 1)*(a*d*m - b*c*(m + 2*p + 3)*x 
)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[p, -1] && 
 LtQ[0, m, 1]
 

rule 555
Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> 
Simp[2   Subst[Int[(f + g*x^2)/Sqrt[a + c*x^4], x], x, Sqrt[x]], x] /; Free 
Q[{a, c, f, g}, x]
 

rule 556
Int[((c_) + (d_.)*(x_))/(Sqrt[(e_)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symb 
ol] :> Simp[Sqrt[x]/Sqrt[e*x]   Int[(c + d*x)/(Sqrt[x]*Sqrt[a + b*x^2]), x] 
, x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1512
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + c*x^4], x], x] - Simp[e/q 
 Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a, c 
, d, e}, x] && PosQ[c/a]
 
Maple [A] (verified)

Time = 1.30 (sec) , antiderivative size = 405, normalized size of antiderivative = 1.19

method result size
elliptic \(\frac {\sqrt {d x}\, \sqrt {d \left (b \,x^{2}+a \right ) x}\, \left (\frac {\left (-\frac {d^{2} A x}{3 b^{3}}+\frac {d^{2} B a}{3 b^{4}}\right ) \sqrt {b d \,x^{3}+a d x}}{\left (x^{2}+\frac {a}{b}\right )^{2}}-\frac {2 b d x \left (-\frac {d^{2} A x}{4 a \,b^{2}}+\frac {7 d^{2} B}{12 b^{3}}\right )}{\sqrt {\left (x^{2}+\frac {a}{b}\right ) b d x}}+\frac {5 B \,d^{3} \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{12 b^{3} \sqrt {b d \,x^{3}+a d x}}-\frac {d^{3} A \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{4 b^{2} a \sqrt {b d \,x^{3}+a d x}}\right )}{d x \sqrt {b \,x^{2}+a}}\) \(405\)
default \(\frac {\left (3 A \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a \,b^{2} x^{2}-6 A \sqrt {2}\, \operatorname {EllipticE}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, a \,b^{2} x^{2}+5 B \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a b}\, a b \,x^{2}+3 A \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {2}\, a^{2} b -6 A \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticE}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {2}\, a^{2} b +5 B \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {2}\, \sqrt {-a b}\, a^{2}+6 A \,b^{3} x^{4}-14 B a \,b^{2} x^{3}+2 A a \,b^{2} x^{2}-10 B \,a^{2} b x \right ) d^{2} \sqrt {d x}}{12 x \,b^{3} a \left (b \,x^{2}+a \right )^{\frac {3}{2}}}\) \(601\)

Input:

int((d*x)^(5/2)*(B*x+A)/(b*x^2+a)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/d/x*(d*x)^(1/2)/(b*x^2+a)^(1/2)*(d*(b*x^2+a)*x)^(1/2)*((-1/3*d^2/b^3*A*x 
+1/3*d^2/b^4*B*a)*(b*d*x^3+a*d*x)^(1/2)/(x^2+a/b)^2-2*b*d*x*(-1/4/a*d^2*A/ 
b^2*x+7/12*d^2*B/b^3)/((x^2+a/b)*b*d*x)^(1/2)+5/12*B*d^3/b^3*(-a*b)^(1/2)* 
((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1 
/2)*b)^(1/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)/(b*d*x^3+a*d*x)^(1/2)*EllipticF(( 
(x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2))-1/4/b^2/a*d^3*A*(-a* 
b)^(1/2)*((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/ 
(-a*b)^(1/2)*b)^(1/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)/(b*d*x^3+a*d*x)^(1/2)*(- 
2*(-a*b)^(1/2)/b*EllipticE(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2 
^(1/2))+(-a*b)^(1/2)/b*EllipticF(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2) 
,1/2*2^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.59 \[ \int \frac {(d x)^{5/2} (A+B x)}{\left (a+b x^2\right )^{5/2}} \, dx=\frac {5 \, {\left (B a b^{2} d^{2} x^{4} + 2 \, B a^{2} b d^{2} x^{2} + B a^{3} d^{2}\right )} \sqrt {b d} {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right ) + 3 \, {\left (A b^{3} d^{2} x^{4} + 2 \, A a b^{2} d^{2} x^{2} + A a^{2} b d^{2}\right )} \sqrt {b d} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right ) + {\left (3 \, A b^{3} d^{2} x^{3} - 7 \, B a b^{2} d^{2} x^{2} + A a b^{2} d^{2} x - 5 \, B a^{2} b d^{2}\right )} \sqrt {b x^{2} + a} \sqrt {d x}}{6 \, {\left (a b^{5} x^{4} + 2 \, a^{2} b^{4} x^{2} + a^{3} b^{3}\right )}} \] Input:

integrate((d*x)^(5/2)*(B*x+A)/(b*x^2+a)^(5/2),x, algorithm="fricas")
 

Output:

1/6*(5*(B*a*b^2*d^2*x^4 + 2*B*a^2*b*d^2*x^2 + B*a^3*d^2)*sqrt(b*d)*weierst 
rassPInverse(-4*a/b, 0, x) + 3*(A*b^3*d^2*x^4 + 2*A*a*b^2*d^2*x^2 + A*a^2* 
b*d^2)*sqrt(b*d)*weierstrassZeta(-4*a/b, 0, weierstrassPInverse(-4*a/b, 0, 
 x)) + (3*A*b^3*d^2*x^3 - 7*B*a*b^2*d^2*x^2 + A*a*b^2*d^2*x - 5*B*a^2*b*d^ 
2)*sqrt(b*x^2 + a)*sqrt(d*x))/(a*b^5*x^4 + 2*a^2*b^4*x^2 + a^3*b^3)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 177.99 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.28 \[ \int \frac {(d x)^{5/2} (A+B x)}{\left (a+b x^2\right )^{5/2}} \, dx=\frac {A d^{\frac {5}{2}} x^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {7}{4}, \frac {5}{2} \\ \frac {11}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {5}{2}} \Gamma \left (\frac {11}{4}\right )} + \frac {B d^{\frac {5}{2}} x^{\frac {9}{2}} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {9}{4}, \frac {5}{2} \\ \frac {13}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {5}{2}} \Gamma \left (\frac {13}{4}\right )} \] Input:

integrate((d*x)**(5/2)*(B*x+A)/(b*x**2+a)**(5/2),x)
 

Output:

A*d**(5/2)*x**(7/2)*gamma(7/4)*hyper((7/4, 5/2), (11/4,), b*x**2*exp_polar 
(I*pi)/a)/(2*a**(5/2)*gamma(11/4)) + B*d**(5/2)*x**(9/2)*gamma(9/4)*hyper( 
(9/4, 5/2), (13/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(5/2)*gamma(13/4))
 

Maxima [F]

\[ \int \frac {(d x)^{5/2} (A+B x)}{\left (a+b x^2\right )^{5/2}} \, dx=\int { \frac {{\left (B x + A\right )} \left (d x\right )^{\frac {5}{2}}}{{\left (b x^{2} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((d*x)^(5/2)*(B*x+A)/(b*x^2+a)^(5/2),x, algorithm="maxima")
 

Output:

integrate((B*x + A)*(d*x)^(5/2)/(b*x^2 + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {(d x)^{5/2} (A+B x)}{\left (a+b x^2\right )^{5/2}} \, dx=\int { \frac {{\left (B x + A\right )} \left (d x\right )^{\frac {5}{2}}}{{\left (b x^{2} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((d*x)^(5/2)*(B*x+A)/(b*x^2+a)^(5/2),x, algorithm="giac")
 

Output:

integrate((B*x + A)*(d*x)^(5/2)/(b*x^2 + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(d x)^{5/2} (A+B x)}{\left (a+b x^2\right )^{5/2}} \, dx=\int \frac {{\left (d\,x\right )}^{5/2}\,\left (A+B\,x\right )}{{\left (b\,x^2+a\right )}^{5/2}} \,d x \] Input:

int(((d*x)^(5/2)*(A + B*x))/(a + b*x^2)^(5/2),x)
 

Output:

int(((d*x)^(5/2)*(A + B*x))/(a + b*x^2)^(5/2), x)
 

Reduce [F]

\[ \int \frac {(d x)^{5/2} (A+B x)}{\left (a+b x^2\right )^{5/2}} \, dx=\frac {\sqrt {d}\, d^{2} \left (-2 \sqrt {x}\, \sqrt {b \,x^{2}+a}\, a x -6 \sqrt {x}\, \sqrt {b \,x^{2}+a}\, a -6 \sqrt {x}\, \sqrt {b \,x^{2}+a}\, b \,x^{2}+3 \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b^{3} x^{6}+3 a \,b^{2} x^{4}+3 a^{2} b \,x^{2}+a^{3}}d x \right ) a^{4}+6 \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b^{3} x^{6}+3 a \,b^{2} x^{4}+3 a^{2} b \,x^{2}+a^{3}}d x \right ) a^{3} b \,x^{2}+3 \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b^{3} x^{6}+3 a \,b^{2} x^{4}+3 a^{2} b \,x^{2}+a^{3}}d x \right ) a^{2} b^{2} x^{4}+3 \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b^{3} x^{7}+3 a \,b^{2} x^{5}+3 a^{2} b \,x^{3}+a^{3} x}d x \right ) a^{4}+6 \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b^{3} x^{7}+3 a \,b^{2} x^{5}+3 a^{2} b \,x^{3}+a^{3} x}d x \right ) a^{3} b \,x^{2}+3 \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b^{3} x^{7}+3 a \,b^{2} x^{5}+3 a^{2} b \,x^{3}+a^{3} x}d x \right ) a^{2} b^{2} x^{4}\right )}{3 b \left (b^{2} x^{4}+2 a b \,x^{2}+a^{2}\right )} \] Input:

int((d*x)^(5/2)*(B*x+A)/(b*x^2+a)^(5/2),x)
 

Output:

(sqrt(d)*d**2*( - 2*sqrt(x)*sqrt(a + b*x**2)*a*x - 6*sqrt(x)*sqrt(a + b*x* 
*2)*a - 6*sqrt(x)*sqrt(a + b*x**2)*b*x**2 + 3*int((sqrt(x)*sqrt(a + b*x**2 
))/(a**3 + 3*a**2*b*x**2 + 3*a*b**2*x**4 + b**3*x**6),x)*a**4 + 6*int((sqr 
t(x)*sqrt(a + b*x**2))/(a**3 + 3*a**2*b*x**2 + 3*a*b**2*x**4 + b**3*x**6), 
x)*a**3*b*x**2 + 3*int((sqrt(x)*sqrt(a + b*x**2))/(a**3 + 3*a**2*b*x**2 + 
3*a*b**2*x**4 + b**3*x**6),x)*a**2*b**2*x**4 + 3*int((sqrt(x)*sqrt(a + b*x 
**2))/(a**3*x + 3*a**2*b*x**3 + 3*a*b**2*x**5 + b**3*x**7),x)*a**4 + 6*int 
((sqrt(x)*sqrt(a + b*x**2))/(a**3*x + 3*a**2*b*x**3 + 3*a*b**2*x**5 + b**3 
*x**7),x)*a**3*b*x**2 + 3*int((sqrt(x)*sqrt(a + b*x**2))/(a**3*x + 3*a**2* 
b*x**3 + 3*a*b**2*x**5 + b**3*x**7),x)*a**2*b**2*x**4))/(3*b*(a**2 + 2*a*b 
*x**2 + b**2*x**4))