\(\int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx\) [1461]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 337 \[ \int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx=-\frac {2 (4 c-3 d x) \sqrt {c+d x} \sqrt {a-b x^2}}{15 d^2}+\frac {4 \sqrt {a} \left (4 b c^2-3 a d^2\right ) \sqrt {c+d x} \sqrt {1-\frac {b x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {b} x}{\sqrt {a}}}}{\sqrt {2}}\right )|\frac {2 \sqrt {a} d}{\sqrt {b} c+\sqrt {a} d}\right )}{15 \sqrt {b} d^3 \sqrt {\frac {\sqrt {b} (c+d x)}{\sqrt {b} c+\sqrt {a} d}} \sqrt {a-b x^2}}-\frac {16 \sqrt {a} c \left (b c^2-a d^2\right ) \sqrt {\frac {\sqrt {b} (c+d x)}{\sqrt {b} c+\sqrt {a} d}} \sqrt {1-\frac {b x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {b} x}{\sqrt {a}}}}{\sqrt {2}}\right ),\frac {2 \sqrt {a} d}{\sqrt {b} c+\sqrt {a} d}\right )}{15 \sqrt {b} d^3 \sqrt {c+d x} \sqrt {a-b x^2}} \] Output:

-2/15*(-3*d*x+4*c)*(d*x+c)^(1/2)*(-b*x^2+a)^(1/2)/d^2+4/15*a^(1/2)*(-3*a*d 
^2+4*b*c^2)*(d*x+c)^(1/2)*(1-b*x^2/a)^(1/2)*EllipticE(1/2*(1-b^(1/2)*x/a^( 
1/2))^(1/2)*2^(1/2),2^(1/2)*(a^(1/2)*d/(b^(1/2)*c+a^(1/2)*d))^(1/2))/b^(1/ 
2)/d^3/(b^(1/2)*(d*x+c)/(b^(1/2)*c+a^(1/2)*d))^(1/2)/(-b*x^2+a)^(1/2)-16/1 
5*a^(1/2)*c*(-a*d^2+b*c^2)*(b^(1/2)*(d*x+c)/(b^(1/2)*c+a^(1/2)*d))^(1/2)*( 
1-b*x^2/a)^(1/2)*EllipticF(1/2*(1-b^(1/2)*x/a^(1/2))^(1/2)*2^(1/2),2^(1/2) 
*(a^(1/2)*d/(b^(1/2)*c+a^(1/2)*d))^(1/2))/b^(1/2)/d^3/(d*x+c)^(1/2)/(-b*x^ 
2+a)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.97 (sec) , antiderivative size = 496, normalized size of antiderivative = 1.47 \[ \int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx=\frac {\sqrt {a-b x^2} \left (\frac {2 (c+d x) (-4 c+3 d x)}{d^2}+\frac {4 \left (d^2 \sqrt {-c+\frac {\sqrt {a} d}{\sqrt {b}}} \left (4 b c^2-3 a d^2\right ) \left (-a+b x^2\right )-i \sqrt {b} \left (4 b^{3/2} c^3-4 \sqrt {a} b c^2 d-3 a \sqrt {b} c d^2+3 a^{3/2} d^3\right ) \sqrt {\frac {d \left (\frac {\sqrt {a}}{\sqrt {b}}+x\right )}{c+d x}} \sqrt {-\frac {\frac {\sqrt {a} d}{\sqrt {b}}-d x}{c+d x}} (c+d x)^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {-c+\frac {\sqrt {a} d}{\sqrt {b}}}}{\sqrt {c+d x}}\right )|\frac {\sqrt {b} c+\sqrt {a} d}{\sqrt {b} c-\sqrt {a} d}\right )-i \sqrt {a} \sqrt {b} d \left (4 b c^2-\sqrt {a} \sqrt {b} c d-3 a d^2\right ) \sqrt {\frac {d \left (\frac {\sqrt {a}}{\sqrt {b}}+x\right )}{c+d x}} \sqrt {-\frac {\frac {\sqrt {a} d}{\sqrt {b}}-d x}{c+d x}} (c+d x)^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-c+\frac {\sqrt {a} d}{\sqrt {b}}}}{\sqrt {c+d x}}\right ),\frac {\sqrt {b} c+\sqrt {a} d}{\sqrt {b} c-\sqrt {a} d}\right )\right )}{b d^4 \sqrt {-c+\frac {\sqrt {a} d}{\sqrt {b}}} \left (-a+b x^2\right )}\right )}{15 \sqrt {c+d x}} \] Input:

Integrate[(x*Sqrt[a - b*x^2])/Sqrt[c + d*x],x]
 

Output:

(Sqrt[a - b*x^2]*((2*(c + d*x)*(-4*c + 3*d*x))/d^2 + (4*(d^2*Sqrt[-c + (Sq 
rt[a]*d)/Sqrt[b]]*(4*b*c^2 - 3*a*d^2)*(-a + b*x^2) - I*Sqrt[b]*(4*b^(3/2)* 
c^3 - 4*Sqrt[a]*b*c^2*d - 3*a*Sqrt[b]*c*d^2 + 3*a^(3/2)*d^3)*Sqrt[(d*(Sqrt 
[a]/Sqrt[b] + x))/(c + d*x)]*Sqrt[-(((Sqrt[a]*d)/Sqrt[b] - d*x)/(c + d*x)) 
]*(c + d*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-c + (Sqrt[a]*d)/Sqrt[b]]/Sqrt[ 
c + d*x]], (Sqrt[b]*c + Sqrt[a]*d)/(Sqrt[b]*c - Sqrt[a]*d)] - I*Sqrt[a]*Sq 
rt[b]*d*(4*b*c^2 - Sqrt[a]*Sqrt[b]*c*d - 3*a*d^2)*Sqrt[(d*(Sqrt[a]/Sqrt[b] 
 + x))/(c + d*x)]*Sqrt[-(((Sqrt[a]*d)/Sqrt[b] - d*x)/(c + d*x))]*(c + d*x) 
^(3/2)*EllipticF[I*ArcSinh[Sqrt[-c + (Sqrt[a]*d)/Sqrt[b]]/Sqrt[c + d*x]], 
(Sqrt[b]*c + Sqrt[a]*d)/(Sqrt[b]*c - Sqrt[a]*d)]))/(b*d^4*Sqrt[-c + (Sqrt[ 
a]*d)/Sqrt[b]]*(-a + b*x^2))))/(15*Sqrt[c + d*x])
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 329, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {591, 27, 600, 509, 508, 327, 512, 511, 321}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx\)

\(\Big \downarrow \) 591

\(\displaystyle \frac {4 \int -\frac {a c d+\left (4 b c^2-3 a d^2\right ) x}{2 \sqrt {c+d x} \sqrt {a-b x^2}}dx}{15 d^2}-\frac {2 \sqrt {a-b x^2} (4 c-3 d x) \sqrt {c+d x}}{15 d^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \int \frac {a c d+\left (4 b c^2-3 a d^2\right ) x}{\sqrt {c+d x} \sqrt {a-b x^2}}dx}{15 d^2}-\frac {2 \sqrt {a-b x^2} \sqrt {c+d x} (4 c-3 d x)}{15 d^2}\)

\(\Big \downarrow \) 600

\(\displaystyle -\frac {2 \left (\frac {\left (4 b c^2-3 a d^2\right ) \int \frac {\sqrt {c+d x}}{\sqrt {a-b x^2}}dx}{d}-\frac {4 c \left (b c^2-a d^2\right ) \int \frac {1}{\sqrt {c+d x} \sqrt {a-b x^2}}dx}{d}\right )}{15 d^2}-\frac {2 \sqrt {a-b x^2} \sqrt {c+d x} (4 c-3 d x)}{15 d^2}\)

\(\Big \downarrow \) 509

\(\displaystyle -\frac {2 \left (\frac {\sqrt {1-\frac {b x^2}{a}} \left (4 b c^2-3 a d^2\right ) \int \frac {\sqrt {c+d x}}{\sqrt {1-\frac {b x^2}{a}}}dx}{d \sqrt {a-b x^2}}-\frac {4 c \left (b c^2-a d^2\right ) \int \frac {1}{\sqrt {c+d x} \sqrt {a-b x^2}}dx}{d}\right )}{15 d^2}-\frac {2 \sqrt {a-b x^2} \sqrt {c+d x} (4 c-3 d x)}{15 d^2}\)

\(\Big \downarrow \) 508

\(\displaystyle -\frac {2 \left (-\frac {4 c \left (b c^2-a d^2\right ) \int \frac {1}{\sqrt {c+d x} \sqrt {a-b x^2}}dx}{d}-\frac {2 \sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x} \left (4 b c^2-3 a d^2\right ) \int \frac {\sqrt {1-\frac {d \left (1-\frac {\sqrt {b} x}{\sqrt {a}}\right )}{\frac {\sqrt {b} c}{\sqrt {a}}+d}}}{\sqrt {\frac {1}{2} \left (\frac {\sqrt {b} x}{\sqrt {a}}-1\right )+1}}d\frac {\sqrt {1-\frac {\sqrt {b} x}{\sqrt {a}}}}{\sqrt {2}}}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {\frac {\sqrt {b} (c+d x)}{\sqrt {a} d+\sqrt {b} c}}}\right )}{15 d^2}-\frac {2 \sqrt {a-b x^2} \sqrt {c+d x} (4 c-3 d x)}{15 d^2}\)

\(\Big \downarrow \) 327

\(\displaystyle -\frac {2 \left (-\frac {4 c \left (b c^2-a d^2\right ) \int \frac {1}{\sqrt {c+d x} \sqrt {a-b x^2}}dx}{d}-\frac {2 \sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x} \left (4 b c^2-3 a d^2\right ) E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {b} x}{\sqrt {a}}}}{\sqrt {2}}\right )|\frac {2 d}{\frac {\sqrt {b} c}{\sqrt {a}}+d}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {\frac {\sqrt {b} (c+d x)}{\sqrt {a} d+\sqrt {b} c}}}\right )}{15 d^2}-\frac {2 \sqrt {a-b x^2} \sqrt {c+d x} (4 c-3 d x)}{15 d^2}\)

\(\Big \downarrow \) 512

\(\displaystyle -\frac {2 \left (-\frac {4 c \sqrt {1-\frac {b x^2}{a}} \left (b c^2-a d^2\right ) \int \frac {1}{\sqrt {c+d x} \sqrt {1-\frac {b x^2}{a}}}dx}{d \sqrt {a-b x^2}}-\frac {2 \sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x} \left (4 b c^2-3 a d^2\right ) E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {b} x}{\sqrt {a}}}}{\sqrt {2}}\right )|\frac {2 d}{\frac {\sqrt {b} c}{\sqrt {a}}+d}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {\frac {\sqrt {b} (c+d x)}{\sqrt {a} d+\sqrt {b} c}}}\right )}{15 d^2}-\frac {2 \sqrt {a-b x^2} \sqrt {c+d x} (4 c-3 d x)}{15 d^2}\)

\(\Big \downarrow \) 511

\(\displaystyle -\frac {2 \left (\frac {8 \sqrt {a} c \sqrt {1-\frac {b x^2}{a}} \left (b c^2-a d^2\right ) \sqrt {\frac {\sqrt {b} (c+d x)}{\sqrt {a} d+\sqrt {b} c}} \int \frac {1}{\sqrt {1-\frac {d \left (1-\frac {\sqrt {b} x}{\sqrt {a}}\right )}{\frac {\sqrt {b} c}{\sqrt {a}}+d}} \sqrt {\frac {1}{2} \left (\frac {\sqrt {b} x}{\sqrt {a}}-1\right )+1}}d\frac {\sqrt {1-\frac {\sqrt {b} x}{\sqrt {a}}}}{\sqrt {2}}}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {c+d x}}-\frac {2 \sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x} \left (4 b c^2-3 a d^2\right ) E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {b} x}{\sqrt {a}}}}{\sqrt {2}}\right )|\frac {2 d}{\frac {\sqrt {b} c}{\sqrt {a}}+d}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {\frac {\sqrt {b} (c+d x)}{\sqrt {a} d+\sqrt {b} c}}}\right )}{15 d^2}-\frac {2 \sqrt {a-b x^2} \sqrt {c+d x} (4 c-3 d x)}{15 d^2}\)

\(\Big \downarrow \) 321

\(\displaystyle -\frac {2 \left (\frac {8 \sqrt {a} c \sqrt {1-\frac {b x^2}{a}} \left (b c^2-a d^2\right ) \sqrt {\frac {\sqrt {b} (c+d x)}{\sqrt {a} d+\sqrt {b} c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {b} x}{\sqrt {a}}}}{\sqrt {2}}\right ),\frac {2 d}{\frac {\sqrt {b} c}{\sqrt {a}}+d}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {c+d x}}-\frac {2 \sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x} \left (4 b c^2-3 a d^2\right ) E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {b} x}{\sqrt {a}}}}{\sqrt {2}}\right )|\frac {2 d}{\frac {\sqrt {b} c}{\sqrt {a}}+d}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {\frac {\sqrt {b} (c+d x)}{\sqrt {a} d+\sqrt {b} c}}}\right )}{15 d^2}-\frac {2 \sqrt {a-b x^2} \sqrt {c+d x} (4 c-3 d x)}{15 d^2}\)

Input:

Int[(x*Sqrt[a - b*x^2])/Sqrt[c + d*x],x]
 

Output:

(-2*(4*c - 3*d*x)*Sqrt[c + d*x]*Sqrt[a - b*x^2])/(15*d^2) - (2*((-2*Sqrt[a 
]*(4*b*c^2 - 3*a*d^2)*Sqrt[c + d*x]*Sqrt[1 - (b*x^2)/a]*EllipticE[ArcSin[S 
qrt[1 - (Sqrt[b]*x)/Sqrt[a]]/Sqrt[2]], (2*d)/((Sqrt[b]*c)/Sqrt[a] + d)])/( 
Sqrt[b]*d*Sqrt[(Sqrt[b]*(c + d*x))/(Sqrt[b]*c + Sqrt[a]*d)]*Sqrt[a - b*x^2 
]) + (8*Sqrt[a]*c*(b*c^2 - a*d^2)*Sqrt[(Sqrt[b]*(c + d*x))/(Sqrt[b]*c + Sq 
rt[a]*d)]*Sqrt[1 - (b*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[b]*x)/Sqrt[a 
]]/Sqrt[2]], (2*d)/((Sqrt[b]*c)/Sqrt[a] + d)])/(Sqrt[b]*d*Sqrt[c + d*x]*Sq 
rt[a - b*x^2])))/(15*d^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 508
Int[Sqrt[(c_) + (d_.)*(x_)]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> With[{q 
 = Rt[-b/a, 2]}, Simp[-2*(Sqrt[c + d*x]/(Sqrt[a]*q*Sqrt[q*((c + d*x)/(d + c 
*q))]))   Subst[Int[Sqrt[1 - 2*d*(x^2/(d + c*q))]/Sqrt[1 - x^2], x], x, Sqr 
t[(1 - q*x)/2]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] && GtQ[a, 0]
 

rule 509
Int[Sqrt[(c_) + (d_.)*(x_)]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[Sq 
rt[1 + b*(x^2/a)]/Sqrt[a + b*x^2]   Int[Sqrt[c + d*x]/Sqrt[1 + b*(x^2/a)], 
x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] &&  !GtQ[a, 0]
 

rule 511
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Wit 
h[{q = Rt[-b/a, 2]}, Simp[-2*(Sqrt[q*((c + d*x)/(d + c*q))]/(Sqrt[a]*q*Sqrt 
[c + d*x]))   Subst[Int[1/(Sqrt[1 - 2*d*(x^2/(d + c*q))]*Sqrt[1 - x^2]), x] 
, x, Sqrt[(1 - q*x)/2]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] && GtQ[ 
a, 0]
 

rule 512
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Sim 
p[Sqrt[1 + b*(x^2/a)]/Sqrt[a + b*x^2]   Int[1/(Sqrt[c + d*x]*Sqrt[1 + b*(x^ 
2/a)]), x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] &&  !GtQ[a, 0]
 

rule 591
Int[(x_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
Simp[(-(c + d*x)^(n + 1))*(a + b*x^2)^p*((c*(2*p + 1) - d*(n + 2*p + 1)*x)/ 
(d^2*(n + 2*p + 1)*(n + 2*p + 2))), x] + Simp[2*(p/(d^2*(n + 2*p + 1)*(n + 
2*p + 2)))   Int[(c + d*x)^n*(a + b*x^2)^(p - 1)*Simp[a*c*d*n + (b*c^2*(2*p 
 + 1) + a*d^2*(n + 2*p + 1))*x, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && 
GtQ[p, 0] && LeQ[-1, n, 0] &&  !ILtQ[n + 2*p, 0]
 

rule 600
Int[((A_.) + (B_.)*(x_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2] 
), x_Symbol] :> Simp[B/d   Int[Sqrt[c + d*x]/Sqrt[a + b*x^2], x], x] - Simp 
[(B*c - A*d)/d   Int[1/(Sqrt[c + d*x]*Sqrt[a + b*x^2]), x], x] /; FreeQ[{a, 
 b, c, d, A, B}, x] && NegQ[b/a]
 
Maple [A] (verified)

Time = 1.65 (sec) , antiderivative size = 492, normalized size of antiderivative = 1.46

method result size
risch \(-\frac {2 \left (-3 d x +4 c \right ) \sqrt {d x +c}\, \sqrt {-b \,x^{2}+a}}{15 d^{2}}-\frac {2 \left (-\frac {\left (3 a \,d^{2}-4 b \,c^{2}\right ) \sqrt {a b}\, \sqrt {2}\, \sqrt {\frac {\left (x +\frac {\sqrt {a b}}{b}\right ) b}{\sqrt {a b}}}\, \sqrt {\frac {x +\frac {c}{d}}{\frac {c}{d}-\frac {\sqrt {a b}}{b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {a b}}{b}\right ) b}{\sqrt {a b}}}\, \left (\left (\frac {c}{d}-\frac {\sqrt {a b}}{b}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {2}\, \sqrt {\frac {\left (x +\frac {\sqrt {a b}}{b}\right ) b}{\sqrt {a b}}}}{2}, \sqrt {-\frac {2 \sqrt {a b}}{b \left (\frac {c}{d}-\frac {\sqrt {a b}}{b}\right )}}\right )-\frac {c \operatorname {EllipticF}\left (\frac {\sqrt {2}\, \sqrt {\frac {\left (x +\frac {\sqrt {a b}}{b}\right ) b}{\sqrt {a b}}}}{2}, \sqrt {-\frac {2 \sqrt {a b}}{b \left (\frac {c}{d}-\frac {\sqrt {a b}}{b}\right )}}\right )}{d}\right )}{b \sqrt {-b d \,x^{3}-b c \,x^{2}+a d x +a c}}+\frac {a c d \sqrt {a b}\, \sqrt {2}\, \sqrt {\frac {\left (x +\frac {\sqrt {a b}}{b}\right ) b}{\sqrt {a b}}}\, \sqrt {\frac {x +\frac {c}{d}}{\frac {c}{d}-\frac {\sqrt {a b}}{b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {a b}}{b}\right ) b}{\sqrt {a b}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {2}\, \sqrt {\frac {\left (x +\frac {\sqrt {a b}}{b}\right ) b}{\sqrt {a b}}}}{2}, \sqrt {-\frac {2 \sqrt {a b}}{b \left (\frac {c}{d}-\frac {\sqrt {a b}}{b}\right )}}\right )}{b \sqrt {-b d \,x^{3}-b c \,x^{2}+a d x +a c}}\right ) \sqrt {\left (d x +c \right ) \left (-b \,x^{2}+a \right )}}{15 d^{2} \sqrt {d x +c}\, \sqrt {-b \,x^{2}+a}}\) \(492\)
elliptic \(\frac {\sqrt {\left (d x +c \right ) \left (-b \,x^{2}+a \right )}\, \left (\frac {2 x \sqrt {-b d \,x^{3}-b c \,x^{2}+a d x +a c}}{5 d}-\frac {8 c \sqrt {-b d \,x^{3}-b c \,x^{2}+a d x +a c}}{15 d^{2}}-\frac {4 a c \left (\frac {c}{d}-\frac {\sqrt {a b}}{b}\right ) \sqrt {\frac {x +\frac {c}{d}}{\frac {c}{d}-\frac {\sqrt {a b}}{b}}}\, \sqrt {\frac {x -\frac {\sqrt {a b}}{b}}{-\frac {c}{d}-\frac {\sqrt {a b}}{b}}}\, \sqrt {\frac {x +\frac {\sqrt {a b}}{b}}{-\frac {c}{d}+\frac {\sqrt {a b}}{b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {c}{d}}{\frac {c}{d}-\frac {\sqrt {a b}}{b}}}, \sqrt {\frac {-\frac {c}{d}+\frac {\sqrt {a b}}{b}}{-\frac {c}{d}-\frac {\sqrt {a b}}{b}}}\right )}{15 d \sqrt {-b d \,x^{3}-b c \,x^{2}+a d x +a c}}+\frac {2 \left (\frac {2 a}{5}-\frac {8 b \,c^{2}}{15 d^{2}}\right ) \left (\frac {c}{d}-\frac {\sqrt {a b}}{b}\right ) \sqrt {\frac {x +\frac {c}{d}}{\frac {c}{d}-\frac {\sqrt {a b}}{b}}}\, \sqrt {\frac {x -\frac {\sqrt {a b}}{b}}{-\frac {c}{d}-\frac {\sqrt {a b}}{b}}}\, \sqrt {\frac {x +\frac {\sqrt {a b}}{b}}{-\frac {c}{d}+\frac {\sqrt {a b}}{b}}}\, \left (\left (-\frac {c}{d}-\frac {\sqrt {a b}}{b}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +\frac {c}{d}}{\frac {c}{d}-\frac {\sqrt {a b}}{b}}}, \sqrt {\frac {-\frac {c}{d}+\frac {\sqrt {a b}}{b}}{-\frac {c}{d}-\frac {\sqrt {a b}}{b}}}\right )+\frac {\sqrt {a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {c}{d}}{\frac {c}{d}-\frac {\sqrt {a b}}{b}}}, \sqrt {\frac {-\frac {c}{d}+\frac {\sqrt {a b}}{b}}{-\frac {c}{d}-\frac {\sqrt {a b}}{b}}}\right )}{b}\right )}{\sqrt {-b d \,x^{3}-b c \,x^{2}+a d x +a c}}\right )}{\sqrt {d x +c}\, \sqrt {-b \,x^{2}+a}}\) \(615\)
default \(\text {Expression too large to display}\) \(1108\)

Input:

int(x*(-b*x^2+a)^(1/2)/(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/15*(-3*d*x+4*c)*(d*x+c)^(1/2)*(-b*x^2+a)^(1/2)/d^2-2/15/d^2*(-(3*a*d^2- 
4*b*c^2)/b*(a*b)^(1/2)*2^(1/2)*((x+1/b*(a*b)^(1/2))*b/(a*b)^(1/2))^(1/2)*( 
(x+c/d)/(c/d-1/b*(a*b)^(1/2)))^(1/2)*(-2*(x-1/b*(a*b)^(1/2))*b/(a*b)^(1/2) 
)^(1/2)/(-b*d*x^3-b*c*x^2+a*d*x+a*c)^(1/2)*((c/d-1/b*(a*b)^(1/2))*Elliptic 
E(1/2*2^(1/2)*((x+1/b*(a*b)^(1/2))*b/(a*b)^(1/2))^(1/2),(-2/b*(a*b)^(1/2)/ 
(c/d-1/b*(a*b)^(1/2)))^(1/2))-c/d*EllipticF(1/2*2^(1/2)*((x+1/b*(a*b)^(1/2 
))*b/(a*b)^(1/2))^(1/2),(-2/b*(a*b)^(1/2)/(c/d-1/b*(a*b)^(1/2)))^(1/2)))+a 
*c*d/b*(a*b)^(1/2)*2^(1/2)*((x+1/b*(a*b)^(1/2))*b/(a*b)^(1/2))^(1/2)*((x+c 
/d)/(c/d-1/b*(a*b)^(1/2)))^(1/2)*(-2*(x-1/b*(a*b)^(1/2))*b/(a*b)^(1/2))^(1 
/2)/(-b*d*x^3-b*c*x^2+a*d*x+a*c)^(1/2)*EllipticF(1/2*2^(1/2)*((x+1/b*(a*b) 
^(1/2))*b/(a*b)^(1/2))^(1/2),(-2/b*(a*b)^(1/2)/(c/d-1/b*(a*b)^(1/2)))^(1/2 
)))*((d*x+c)*(-b*x^2+a))^(1/2)/(d*x+c)^(1/2)/(-b*x^2+a)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.70 \[ \int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx=-\frac {2 \, {\left (4 \, {\left (2 \, b c^{3} - 3 \, a c d^{2}\right )} \sqrt {-b d} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (b c^{2} + 3 \, a d^{2}\right )}}{3 \, b d^{2}}, -\frac {8 \, {\left (b c^{3} - 9 \, a c d^{2}\right )}}{27 \, b d^{3}}, \frac {3 \, d x + c}{3 \, d}\right ) + 6 \, {\left (4 \, b c^{2} d - 3 \, a d^{3}\right )} \sqrt {-b d} {\rm weierstrassZeta}\left (\frac {4 \, {\left (b c^{2} + 3 \, a d^{2}\right )}}{3 \, b d^{2}}, -\frac {8 \, {\left (b c^{3} - 9 \, a c d^{2}\right )}}{27 \, b d^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (b c^{2} + 3 \, a d^{2}\right )}}{3 \, b d^{2}}, -\frac {8 \, {\left (b c^{3} - 9 \, a c d^{2}\right )}}{27 \, b d^{3}}, \frac {3 \, d x + c}{3 \, d}\right )\right ) - 3 \, {\left (3 \, b d^{3} x - 4 \, b c d^{2}\right )} \sqrt {-b x^{2} + a} \sqrt {d x + c}\right )}}{45 \, b d^{4}} \] Input:

integrate(x*(-b*x^2+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

-2/45*(4*(2*b*c^3 - 3*a*c*d^2)*sqrt(-b*d)*weierstrassPInverse(4/3*(b*c^2 + 
 3*a*d^2)/(b*d^2), -8/27*(b*c^3 - 9*a*c*d^2)/(b*d^3), 1/3*(3*d*x + c)/d) + 
 6*(4*b*c^2*d - 3*a*d^3)*sqrt(-b*d)*weierstrassZeta(4/3*(b*c^2 + 3*a*d^2)/ 
(b*d^2), -8/27*(b*c^3 - 9*a*c*d^2)/(b*d^3), weierstrassPInverse(4/3*(b*c^2 
 + 3*a*d^2)/(b*d^2), -8/27*(b*c^3 - 9*a*c*d^2)/(b*d^3), 1/3*(3*d*x + c)/d) 
) - 3*(3*b*d^3*x - 4*b*c*d^2)*sqrt(-b*x^2 + a)*sqrt(d*x + c))/(b*d^4)
 

Sympy [F]

\[ \int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx=\int \frac {x \sqrt {a - b x^{2}}}{\sqrt {c + d x}}\, dx \] Input:

integrate(x*(-b*x**2+a)**(1/2)/(d*x+c)**(1/2),x)
 

Output:

Integral(x*sqrt(a - b*x**2)/sqrt(c + d*x), x)
 

Maxima [F]

\[ \int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx=\int { \frac {\sqrt {-b x^{2} + a} x}{\sqrt {d x + c}} \,d x } \] Input:

integrate(x*(-b*x^2+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(-b*x^2 + a)*x/sqrt(d*x + c), x)
 

Giac [F]

\[ \int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx=\int { \frac {\sqrt {-b x^{2} + a} x}{\sqrt {d x + c}} \,d x } \] Input:

integrate(x*(-b*x^2+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(-b*x^2 + a)*x/sqrt(d*x + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx=\int \frac {x\,\sqrt {a-b\,x^2}}{\sqrt {c+d\,x}} \,d x \] Input:

int((x*(a - b*x^2)^(1/2))/(c + d*x)^(1/2),x)
 

Output:

int((x*(a - b*x^2)^(1/2))/(c + d*x)^(1/2), x)
 

Reduce [F]

\[ \int \frac {x \sqrt {a-b x^2}}{\sqrt {c+d x}} \, dx=\frac {-2 \sqrt {d x +c}\, \sqrt {-b \,x^{2}+a}\, a d +2 \sqrt {d x +c}\, \sqrt {-b \,x^{2}+a}\, b c x -3 \left (\int \frac {\sqrt {d x +c}\, \sqrt {-b \,x^{2}+a}\, x^{2}}{-b d \,x^{3}-b c \,x^{2}+a d x +a c}d x \right ) a b \,d^{2}+4 \left (\int \frac {\sqrt {d x +c}\, \sqrt {-b \,x^{2}+a}\, x^{2}}{-b d \,x^{3}-b c \,x^{2}+a d x +a c}d x \right ) b^{2} c^{2}+\left (\int \frac {\sqrt {d x +c}\, \sqrt {-b \,x^{2}+a}}{-b d \,x^{3}-b c \,x^{2}+a d x +a c}d x \right ) a^{2} d^{2}-2 \left (\int \frac {\sqrt {d x +c}\, \sqrt {-b \,x^{2}+a}}{-b d \,x^{3}-b c \,x^{2}+a d x +a c}d x \right ) a b \,c^{2}}{5 b c d} \] Input:

int(x*(-b*x^2+a)^(1/2)/(d*x+c)^(1/2),x)
 

Output:

( - 2*sqrt(c + d*x)*sqrt(a - b*x**2)*a*d + 2*sqrt(c + d*x)*sqrt(a - b*x**2 
)*b*c*x - 3*int((sqrt(c + d*x)*sqrt(a - b*x**2)*x**2)/(a*c + a*d*x - b*c*x 
**2 - b*d*x**3),x)*a*b*d**2 + 4*int((sqrt(c + d*x)*sqrt(a - b*x**2)*x**2)/ 
(a*c + a*d*x - b*c*x**2 - b*d*x**3),x)*b**2*c**2 + int((sqrt(c + d*x)*sqrt 
(a - b*x**2))/(a*c + a*d*x - b*c*x**2 - b*d*x**3),x)*a**2*d**2 - 2*int((sq 
rt(c + d*x)*sqrt(a - b*x**2))/(a*c + a*d*x - b*c*x**2 - b*d*x**3),x)*a*b*c 
**2)/(5*b*c*d)