\(\int \frac {x^2 (c+d x)}{(a+b x^2)^{4/3}} \, dx\) [1628]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 583 \[ \int \frac {x^2 (c+d x)}{\left (a+b x^2\right )^{4/3}} \, dx=\frac {3 (a d-b c x)}{2 b^2 \sqrt [3]{a+b x^2}}+\frac {3 d \left (a+b x^2\right )^{2/3}}{4 b^2}-\frac {9 c x}{2 b \left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}+\frac {9 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \sqrt [3]{a} c \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} E\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}\right )|-7+4 \sqrt {3}\right )}{4 b^2 x \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}-\frac {3\ 3^{3/4} \sqrt [3]{a} c \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}\right ),-7+4 \sqrt {3}\right )}{\sqrt {2} b^2 x \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}} \] Output:

3/2*(-b*c*x+a*d)/b^2/(b*x^2+a)^(1/3)+3/4*d*(b*x^2+a)^(2/3)/b^2-9/2*c*x/b/( 
(1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))+9/4*3^(1/4)*(1/2*6^(1/2)+1/2*2^(1/2)) 
*a^(1/3)*c*(a^(1/3)-(b*x^2+a)^(1/3))*((a^(2/3)+a^(1/3)*(b*x^2+a)^(1/3)+(b* 
x^2+a)^(2/3))/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))^2)^(1/2)*EllipticE(((1 
+3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3)),2 
*I-I*3^(1/2))/b^2/x/(-a^(1/3)*(a^(1/3)-(b*x^2+a)^(1/3))/((1-3^(1/2))*a^(1/ 
3)-(b*x^2+a)^(1/3))^2)^(1/2)-3/2*3^(3/4)*a^(1/3)*c*(a^(1/3)-(b*x^2+a)^(1/3 
))*((a^(2/3)+a^(1/3)*(b*x^2+a)^(1/3)+(b*x^2+a)^(2/3))/((1-3^(1/2))*a^(1/3) 
-(b*x^2+a)^(1/3))^2)^(1/2)*EllipticF(((1+3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3)) 
/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3)),2*I-I*3^(1/2))*2^(1/2)/b^2/x/(-a^(1 
/3)*(a^(1/3)-(b*x^2+a)^(1/3))/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))^2)^(1/ 
2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.12 \[ \int \frac {x^2 (c+d x)}{\left (a+b x^2\right )^{4/3}} \, dx=\frac {9 a d+3 b x (-2 c+d x)+6 b c x \sqrt [3]{1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {3}{2},-\frac {b x^2}{a}\right )}{4 b^2 \sqrt [3]{a+b x^2}} \] Input:

Integrate[(x^2*(c + d*x))/(a + b*x^2)^(4/3),x]
 

Output:

(9*a*d + 3*b*x*(-2*c + d*x) + 6*b*c*x*(1 + (b*x^2)/a)^(1/3)*Hypergeometric 
2F1[1/3, 1/2, 3/2, -((b*x^2)/a)])/(4*b^2*(a + b*x^2)^(1/3))
 

Rubi [A] (warning: unable to verify)

Time = 0.61 (sec) , antiderivative size = 638, normalized size of antiderivative = 1.09, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {542, 243, 53, 252, 233, 833, 760, 2009, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 (c+d x)}{\left (a+b x^2\right )^{4/3}} \, dx\)

\(\Big \downarrow \) 542

\(\displaystyle c \int \frac {x^2}{\left (b x^2+a\right )^{4/3}}dx+d \int \frac {x^3}{\left (b x^2+a\right )^{4/3}}dx\)

\(\Big \downarrow \) 243

\(\displaystyle c \int \frac {x^2}{\left (b x^2+a\right )^{4/3}}dx+\frac {1}{2} d \int \frac {x^2}{\left (b x^2+a\right )^{4/3}}dx^2\)

\(\Big \downarrow \) 53

\(\displaystyle c \int \frac {x^2}{\left (b x^2+a\right )^{4/3}}dx+\frac {1}{2} d \int \left (\frac {1}{b \sqrt [3]{b x^2+a}}-\frac {a}{b \left (b x^2+a\right )^{4/3}}\right )dx^2\)

\(\Big \downarrow \) 252

\(\displaystyle c \left (\frac {3 \int \frac {1}{\sqrt [3]{b x^2+a}}dx}{2 b}-\frac {3 x}{2 b \sqrt [3]{a+b x^2}}\right )+\frac {1}{2} d \int \left (\frac {1}{b \sqrt [3]{b x^2+a}}-\frac {a}{b \left (b x^2+a\right )^{4/3}}\right )dx^2\)

\(\Big \downarrow \) 233

\(\displaystyle c \left (\frac {9 \sqrt {b x^2} \int \frac {\sqrt [3]{b x^2+a}}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}}{4 b^2 x}-\frac {3 x}{2 b \sqrt [3]{a+b x^2}}\right )+\frac {1}{2} d \int \left (\frac {1}{b \sqrt [3]{b x^2+a}}-\frac {a}{b \left (b x^2+a\right )^{4/3}}\right )dx^2\)

\(\Big \downarrow \) 833

\(\displaystyle c \left (\frac {9 \sqrt {b x^2} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a} \int \frac {1}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}-\int \frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}\right )}{4 b^2 x}-\frac {3 x}{2 b \sqrt [3]{a+b x^2}}\right )+\frac {1}{2} d \int \left (\frac {1}{b \sqrt [3]{b x^2+a}}-\frac {a}{b \left (b x^2+a\right )^{4/3}}\right )dx^2\)

\(\Big \downarrow \) 760

\(\displaystyle c \left (\frac {9 \sqrt {b x^2} \left (-\int \frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {b x^2} \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}\right )}{4 b^2 x}-\frac {3 x}{2 b \sqrt [3]{a+b x^2}}\right )+\frac {1}{2} d \int \left (\frac {1}{b \sqrt [3]{b x^2+a}}-\frac {a}{b \left (b x^2+a\right )^{4/3}}\right )dx^2\)

\(\Big \downarrow \) 2009

\(\displaystyle c \left (\frac {9 \sqrt {b x^2} \left (-\int \frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {b x^2} \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}\right )}{4 b^2 x}-\frac {3 x}{2 b \sqrt [3]{a+b x^2}}\right )+\frac {1}{2} d \left (\frac {3 a}{b^2 \sqrt [3]{a+b x^2}}+\frac {3 \left (a+b x^2\right )^{2/3}}{2 b^2}\right )\)

\(\Big \downarrow \) 2418

\(\displaystyle c \left (\frac {9 \sqrt {b x^2} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {b x^2} \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} E\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}\right )|-7+4 \sqrt {3}\right )}{\sqrt {b x^2} \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}-\frac {2 \sqrt {b x^2}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}\right )}{4 b^2 x}-\frac {3 x}{2 b \sqrt [3]{a+b x^2}}\right )+\frac {1}{2} d \left (\frac {3 a}{b^2 \sqrt [3]{a+b x^2}}+\frac {3 \left (a+b x^2\right )^{2/3}}{2 b^2}\right )\)

Input:

Int[(x^2*(c + d*x))/(a + b*x^2)^(4/3),x]
 

Output:

(d*((3*a)/(b^2*(a + b*x^2)^(1/3)) + (3*(a + b*x^2)^(2/3))/(2*b^2)))/2 + c* 
((-3*x)/(2*b*(a + b*x^2)^(1/3)) + (9*Sqrt[b*x^2]*((-2*Sqrt[b*x^2])/((1 - S 
qrt[3])*a^(1/3) - (a + b*x^2)^(1/3)) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*a^(1/3)* 
(a^(1/3) - (a + b*x^2)^(1/3))*Sqrt[(a^(2/3) + a^(1/3)*(a + b*x^2)^(1/3) + 
(a + b*x^2)^(2/3))/((1 - Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3))^2]*Elliptic 
E[ArcSin[((1 + Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3))/((1 - Sqrt[3])*a^(1/3 
) - (a + b*x^2)^(1/3))], -7 + 4*Sqrt[3]])/(Sqrt[b*x^2]*Sqrt[-((a^(1/3)*(a^ 
(1/3) - (a + b*x^2)^(1/3)))/((1 - Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3))^2) 
]) - (2*Sqrt[2 - Sqrt[3]]*(1 + Sqrt[3])*a^(1/3)*(a^(1/3) - (a + b*x^2)^(1/ 
3))*Sqrt[(a^(2/3) + a^(1/3)*(a + b*x^2)^(1/3) + (a + b*x^2)^(2/3))/((1 - S 
qrt[3])*a^(1/3) - (a + b*x^2)^(1/3))^2]*EllipticF[ArcSin[((1 + Sqrt[3])*a^ 
(1/3) - (a + b*x^2)^(1/3))/((1 - Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3))], - 
7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[b*x^2]*Sqrt[-((a^(1/3)*(a^(1/3) - (a + b*x^2 
)^(1/3)))/((1 - Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3))^2)])))/(4*b^2*x))
 

Defintions of rubi rules used

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 233
Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[x/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 542
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Simp[c   Int[x^m*(a + b*x^2)^p, x], x] + Simp[d   Int[x^(m + 1)*(a + b*x^2 
)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && IntegerQ[m] &&  !IntegerQ[2*p]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [F]

\[\int \frac {x^{2} \left (d x +c \right )}{\left (b \,x^{2}+a \right )^{\frac {4}{3}}}d x\]

Input:

int(x^2*(d*x+c)/(b*x^2+a)^(4/3),x)
 

Output:

int(x^2*(d*x+c)/(b*x^2+a)^(4/3),x)
 

Fricas [F]

\[ \int \frac {x^2 (c+d x)}{\left (a+b x^2\right )^{4/3}} \, dx=\int { \frac {{\left (d x + c\right )} x^{2}}{{\left (b x^{2} + a\right )}^{\frac {4}{3}}} \,d x } \] Input:

integrate(x^2*(d*x+c)/(b*x^2+a)^(4/3),x, algorithm="fricas")
 

Output:

integral((d*x^3 + c*x^2)*(b*x^2 + a)^(2/3)/(b^2*x^4 + 2*a*b*x^2 + a^2), x)
 

Sympy [A] (verification not implemented)

Time = 2.65 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.13 \[ \int \frac {x^2 (c+d x)}{\left (a+b x^2\right )^{4/3}} \, dx=d \left (\begin {cases} \frac {9 a}{4 b^{2} \sqrt [3]{a + b x^{2}}} + \frac {3 x^{2}}{4 b \sqrt [3]{a + b x^{2}}} & \text {for}\: b \neq 0 \\\frac {x^{4}}{4 a^{\frac {4}{3}}} & \text {otherwise} \end {cases}\right ) + \frac {c x^{3} {{}_{2}F_{1}\left (\begin {matrix} \frac {4}{3}, \frac {3}{2} \\ \frac {5}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{3 a^{\frac {4}{3}}} \] Input:

integrate(x**2*(d*x+c)/(b*x**2+a)**(4/3),x)
 

Output:

d*Piecewise((9*a/(4*b**2*(a + b*x**2)**(1/3)) + 3*x**2/(4*b*(a + b*x**2)** 
(1/3)), Ne(b, 0)), (x**4/(4*a**(4/3)), True)) + c*x**3*hyper((4/3, 3/2), ( 
5/2,), b*x**2*exp_polar(I*pi)/a)/(3*a**(4/3))
 

Maxima [F]

\[ \int \frac {x^2 (c+d x)}{\left (a+b x^2\right )^{4/3}} \, dx=\int { \frac {{\left (d x + c\right )} x^{2}}{{\left (b x^{2} + a\right )}^{\frac {4}{3}}} \,d x } \] Input:

integrate(x^2*(d*x+c)/(b*x^2+a)^(4/3),x, algorithm="maxima")
 

Output:

integrate((d*x + c)*x^2/(b*x^2 + a)^(4/3), x)
 

Giac [F]

\[ \int \frac {x^2 (c+d x)}{\left (a+b x^2\right )^{4/3}} \, dx=\int { \frac {{\left (d x + c\right )} x^{2}}{{\left (b x^{2} + a\right )}^{\frac {4}{3}}} \,d x } \] Input:

integrate(x^2*(d*x+c)/(b*x^2+a)^(4/3),x, algorithm="giac")
 

Output:

integrate((d*x + c)*x^2/(b*x^2 + a)^(4/3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 (c+d x)}{\left (a+b x^2\right )^{4/3}} \, dx=\int \frac {x^2\,\left (c+d\,x\right )}{{\left (b\,x^2+a\right )}^{4/3}} \,d x \] Input:

int((x^2*(c + d*x))/(a + b*x^2)^(4/3),x)
 

Output:

int((x^2*(c + d*x))/(a + b*x^2)^(4/3), x)
 

Reduce [F]

\[ \int \frac {x^2 (c+d x)}{\left (a+b x^2\right )^{4/3}} \, dx=\left (\int \frac {x^{3}}{\left (b \,x^{2}+a \right )^{\frac {1}{3}} a +\left (b \,x^{2}+a \right )^{\frac {1}{3}} b \,x^{2}}d x \right ) d +\left (\int \frac {x^{2}}{\left (b \,x^{2}+a \right )^{\frac {1}{3}} a +\left (b \,x^{2}+a \right )^{\frac {1}{3}} b \,x^{2}}d x \right ) c \] Input:

int(x^2*(d*x+c)/(b*x^2+a)^(4/3),x)
 

Output:

int(x**3/((a + b*x**2)**(1/3)*a + (a + b*x**2)**(1/3)*b*x**2),x)*d + int(x 
**2/((a + b*x**2)**(1/3)*a + (a + b*x**2)**(1/3)*b*x**2),x)*c