\(\int \frac {(a+b x^2)^p}{c+d x} \, dx\) [1846]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 17, antiderivative size = 125 \[ \int \frac {\left (a+b x^2\right )^p}{c+d x} \, dx=\frac {x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,1,\frac {3}{2},-\frac {b x^2}{a},\frac {d^2 x^2}{c^2}\right )}{c}-\frac {d \left (a+b x^2\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {d^2 \left (a+b x^2\right )}{b c^2+a d^2}\right )}{2 \left (b c^2+a d^2\right ) (1+p)} \] Output:

x*(b*x^2+a)^p*AppellF1(1/2,1,-p,3/2,d^2*x^2/c^2,-b*x^2/a)/c/((1+b*x^2/a)^p 
)-1/2*d*(b*x^2+a)^(p+1)*hypergeom([1, p+1],[2+p],d^2*(b*x^2+a)/(a*d^2+b*c^ 
2))/(a*d^2+b*c^2)/(p+1)
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.05 \[ \int \frac {\left (a+b x^2\right )^p}{c+d x} \, dx=\frac {\left (\frac {d \left (-\sqrt {-\frac {a}{b}}+x\right )}{c+d x}\right )^{-p} \left (\frac {d \left (\sqrt {-\frac {a}{b}}+x\right )}{c+d x}\right )^{-p} \left (a+b x^2\right )^p \operatorname {AppellF1}\left (-2 p,-p,-p,1-2 p,\frac {c-\sqrt {-\frac {a}{b}} d}{c+d x},\frac {c+\sqrt {-\frac {a}{b}} d}{c+d x}\right )}{2 d p} \] Input:

Integrate[(a + b*x^2)^p/(c + d*x),x]
 

Output:

((a + b*x^2)^p*AppellF1[-2*p, -p, -p, 1 - 2*p, (c - Sqrt[-(a/b)]*d)/(c + d 
*x), (c + Sqrt[-(a/b)]*d)/(c + d*x)])/(2*d*p*((d*(-Sqrt[-(a/b)] + x))/(c + 
 d*x))^p*((d*(Sqrt[-(a/b)] + x))/(c + d*x))^p)
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {504, 334, 333, 353, 78}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^2\right )^p}{c+d x} \, dx\)

\(\Big \downarrow \) 504

\(\displaystyle c \int \frac {\left (b x^2+a\right )^p}{c^2-d^2 x^2}dx-d \int \frac {x \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx\)

\(\Big \downarrow \) 334

\(\displaystyle c \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \int \frac {\left (\frac {b x^2}{a}+1\right )^p}{c^2-d^2 x^2}dx-d \int \frac {x \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx\)

\(\Big \downarrow \) 333

\(\displaystyle \frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,1,\frac {3}{2},-\frac {b x^2}{a},\frac {d^2 x^2}{c^2}\right )}{c}-d \int \frac {x \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx\)

\(\Big \downarrow \) 353

\(\displaystyle \frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,1,\frac {3}{2},-\frac {b x^2}{a},\frac {d^2 x^2}{c^2}\right )}{c}-\frac {1}{2} d \int \frac {\left (b x^2+a\right )^p}{c^2-d^2 x^2}dx^2\)

\(\Big \downarrow \) 78

\(\displaystyle \frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,1,\frac {3}{2},-\frac {b x^2}{a},\frac {d^2 x^2}{c^2}\right )}{c}-\frac {d \left (a+b x^2\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {d^2 \left (b x^2+a\right )}{b c^2+a d^2}\right )}{2 (p+1) \left (a d^2+b c^2\right )}\)

Input:

Int[(a + b*x^2)^p/(c + d*x),x]
 

Output:

(x*(a + b*x^2)^p*AppellF1[1/2, -p, 1, 3/2, -((b*x^2)/a), (d^2*x^2)/c^2])/( 
c*(1 + (b*x^2)/a)^p) - (d*(a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 
2 + p, (d^2*(a + b*x^2))/(b*c^2 + a*d^2)])/(2*(b*c^2 + a*d^2)*(1 + p))
 

Defintions of rubi rules used

rule 78
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b 
*c - a*d)^n*((a + b*x)^(m + 1)/(b^(n + 1)*(m + 1)))*Hypergeometric2F1[-n, m 
 + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m}, x] 
 &&  !IntegerQ[m] && IntegerQ[n]
 

rule 333
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[a^p*c^q*x*AppellF1[1/2, -p, -q, 3/2, (-b)*(x^2/a), (-d)*(x^2/c)], x] /; F 
reeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[p] || GtQ[a, 
0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 334
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[a^IntPart[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[ 
(1 + b*(x^2/a))^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, p, q}, x] && 
NeQ[b*c - a*d, 0] &&  !(IntegerQ[p] || GtQ[a, 0])
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 504
Int[((a_) + (b_.)*(x_)^2)^(p_)/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[c   I 
nt[(a + b*x^2)^p/(c^2 - d^2*x^2), x], x] - Simp[d   Int[x*((a + b*x^2)^p/(c 
^2 - d^2*x^2)), x], x] /; FreeQ[{a, b, c, d, p}, x]
 
Maple [F]

\[\int \frac {\left (b \,x^{2}+a \right )^{p}}{d x +c}d x\]

Input:

int((b*x^2+a)^p/(d*x+c),x)
 

Output:

int((b*x^2+a)^p/(d*x+c),x)
 

Fricas [F]

\[ \int \frac {\left (a+b x^2\right )^p}{c+d x} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p}}{d x + c} \,d x } \] Input:

integrate((b*x^2+a)^p/(d*x+c),x, algorithm="fricas")
 

Output:

integral((b*x^2 + a)^p/(d*x + c), x)
 

Sympy [F]

\[ \int \frac {\left (a+b x^2\right )^p}{c+d x} \, dx=\int \frac {\left (a + b x^{2}\right )^{p}}{c + d x}\, dx \] Input:

integrate((b*x**2+a)**p/(d*x+c),x)
 

Output:

Integral((a + b*x**2)**p/(c + d*x), x)
 

Maxima [F]

\[ \int \frac {\left (a+b x^2\right )^p}{c+d x} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p}}{d x + c} \,d x } \] Input:

integrate((b*x^2+a)^p/(d*x+c),x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^p/(d*x + c), x)
 

Giac [F]

\[ \int \frac {\left (a+b x^2\right )^p}{c+d x} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p}}{d x + c} \,d x } \] Input:

integrate((b*x^2+a)^p/(d*x+c),x, algorithm="giac")
 

Output:

integrate((b*x^2 + a)^p/(d*x + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^p}{c+d x} \, dx=\int \frac {{\left (b\,x^2+a\right )}^p}{c+d\,x} \,d x \] Input:

int((a + b*x^2)^p/(c + d*x),x)
 

Output:

int((a + b*x^2)^p/(c + d*x), x)
 

Reduce [F]

\[ \int \frac {\left (a+b x^2\right )^p}{c+d x} \, dx=\int \frac {\left (b \,x^{2}+a \right )^{p}}{d x +c}d x \] Input:

int((b*x^2+a)^p/(d*x+c),x)
 

Output:

int((a + b*x**2)**p/(c + d*x),x)