\(\int (e x)^{-1-2 p} (c+d x)^4 (a+b x^2)^p \, dx\) [1887]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 308 \[ \int (e x)^{-1-2 p} (c+d x)^4 \left (a+b x^2\right )^p \, dx=\frac {4 c d^3 (e x)^{1-2 p} \left (a+b x^2\right )^{1+p}}{3 b e^2}+\frac {d^4 (e x)^{2-2 p} \left (a+b x^2\right )^{1+p}}{4 b e^3}+\frac {d^2 \left (12 b c^2-a d^2 (1-p)\right ) (e x)^{-2 p} \left (a+b x^2\right )^{1+p}}{4 b^2 e}-\frac {4 c d \left (\frac {a d^2}{b}-\frac {3 c^2}{1-2 p}\right ) (e x)^{1-2 p} \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (1-2 p),-p,\frac {1}{2} (3-2 p),-\frac {b x^2}{a}\right )}{3 e^2}-\frac {\left (2 b^2 c^4+12 a b c^2 d^2 p-a^2 d^4 (1-p) p\right ) (e x)^{-2 p} \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,-\frac {b x^2}{a}\right )}{4 b^2 e p} \] Output:

4/3*c*d^3*(e*x)^(1-2*p)*(b*x^2+a)^(p+1)/b/e^2+1/4*d^4*(e*x)^(2-2*p)*(b*x^2 
+a)^(p+1)/b/e^3+1/4*d^2*(12*b*c^2-a*d^2*(1-p))*(b*x^2+a)^(p+1)/b^2/e/((e*x 
)^(2*p))-4/3*c*d*(a*d^2/b-3*c^2/(1-2*p))*(e*x)^(1-2*p)*(b*x^2+a)^p*hyperge 
om([-p, 1/2-p],[3/2-p],-b*x^2/a)/e^2/((1+b*x^2/a)^p)-1/4*(2*b^2*c^4+12*a*b 
*c^2*d^2*p-a^2*d^4*(1-p)*p)*(b*x^2+a)^p*hypergeom([-p, -p],[1-p],-b*x^2/a) 
/b^2/e/p/((e*x)^(2*p))/((1+b*x^2/a)^p)
 

Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 227, normalized size of antiderivative = 0.74 \[ \int (e x)^{-1-2 p} (c+d x)^4 \left (a+b x^2\right )^p \, dx=\frac {(e x)^{-2 p} \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \left (\frac {8 c^3 d x \operatorname {Hypergeometric2F1}\left (\frac {1}{2}-p,-p,\frac {3}{2}-p,-\frac {b x^2}{a}\right )}{1-2 p}-\frac {6 c^2 d^2 x^2 \operatorname {Hypergeometric2F1}\left (1-p,-p,2-p,-\frac {b x^2}{a}\right )}{-1+p}+\frac {8 c d^3 x^3 \operatorname {Hypergeometric2F1}\left (\frac {3}{2}-p,-p,\frac {5}{2}-p,-\frac {b x^2}{a}\right )}{3-2 p}+\frac {d^4 x^4 \operatorname {Hypergeometric2F1}\left (2-p,-p,3-p,-\frac {b x^2}{a}\right )}{2-p}-\frac {c^4 \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,-\frac {b x^2}{a}\right )}{p}\right )}{2 e} \] Input:

Integrate[(e*x)^(-1 - 2*p)*(c + d*x)^4*(a + b*x^2)^p,x]
 

Output:

((a + b*x^2)^p*((8*c^3*d*x*Hypergeometric2F1[1/2 - p, -p, 3/2 - p, -((b*x^ 
2)/a)])/(1 - 2*p) - (6*c^2*d^2*x^2*Hypergeometric2F1[1 - p, -p, 2 - p, -(( 
b*x^2)/a)])/(-1 + p) + (8*c*d^3*x^3*Hypergeometric2F1[3/2 - p, -p, 5/2 - p 
, -((b*x^2)/a)])/(3 - 2*p) + (d^4*x^4*Hypergeometric2F1[2 - p, -p, 3 - p, 
-((b*x^2)/a)])/(2 - p) - (c^4*Hypergeometric2F1[-p, -p, 1 - p, -((b*x^2)/a 
)])/p))/(2*e*(e*x)^(2*p)*(1 + (b*x^2)/a)^p)
 

Rubi [A] (verified)

Time = 1.43 (sec) , antiderivative size = 318, normalized size of antiderivative = 1.03, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {559, 27, 2340, 2340, 27, 557, 279, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c+d x)^4 (e x)^{-2 p-1} \left (a+b x^2\right )^p \, dx\)

\(\Big \downarrow \) 559

\(\displaystyle \frac {\int 2 (e x)^{-2 p-1} \left (b x^2+a\right )^p \left (2 b c^4+8 b d x c^3+8 b d^3 x^3 c+d^2 \left (12 b c^2-a d^2 (1-p)\right ) x^2\right )dx}{4 b}+\frac {d^4 (e x)^{2-2 p} \left (a+b x^2\right )^{p+1}}{4 b e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int (e x)^{-2 p-1} \left (b x^2+a\right )^p \left (2 b c^4+8 b d x c^3+8 b d^3 x^3 c+d^2 \left (12 b c^2-a d^2 (1-p)\right ) x^2\right )dx}{2 b}+\frac {d^4 (e x)^{2-2 p} \left (a+b x^2\right )^{p+1}}{4 b e^3}\)

\(\Big \downarrow \) 2340

\(\displaystyle \frac {\frac {\int (e x)^{-2 p-1} \left (b x^2+a\right )^p \left (6 b^2 c^4+8 b d \left (3 b c^2-a d^2 (1-2 p)\right ) x c+3 b d^2 \left (12 b c^2-a d^2 (1-p)\right ) x^2\right )dx}{3 b}+\frac {8 c d^3 (e x)^{1-2 p} \left (a+b x^2\right )^{p+1}}{3 e^2}}{2 b}+\frac {d^4 (e x)^{2-2 p} \left (a+b x^2\right )^{p+1}}{4 b e^3}\)

\(\Big \downarrow \) 2340

\(\displaystyle \frac {\frac {\frac {\int 2 b (e x)^{-2 p-1} \left (3 \left (2 b^2 c^4+12 a b d^2 p c^2-a^2 d^4 (1-p) p\right )+8 b c d \left (3 b c^2-a d^2 (1-2 p)\right ) x\right ) \left (b x^2+a\right )^pdx}{2 b}+\frac {3 d^2 (e x)^{-2 p} \left (a+b x^2\right )^{p+1} \left (12 b c^2-a d^2 (1-p)\right )}{2 e}}{3 b}+\frac {8 c d^3 (e x)^{1-2 p} \left (a+b x^2\right )^{p+1}}{3 e^2}}{2 b}+\frac {d^4 (e x)^{2-2 p} \left (a+b x^2\right )^{p+1}}{4 b e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int (e x)^{-2 p-1} \left (3 \left (2 b^2 c^4+12 a b d^2 p c^2-a^2 d^4 (1-p) p\right )+8 b c d \left (3 b c^2-a d^2 (1-2 p)\right ) x\right ) \left (b x^2+a\right )^pdx+\frac {3 d^2 (e x)^{-2 p} \left (a+b x^2\right )^{p+1} \left (12 b c^2-a d^2 (1-p)\right )}{2 e}}{3 b}+\frac {8 c d^3 (e x)^{1-2 p} \left (a+b x^2\right )^{p+1}}{3 e^2}}{2 b}+\frac {d^4 (e x)^{2-2 p} \left (a+b x^2\right )^{p+1}}{4 b e^3}\)

\(\Big \downarrow \) 557

\(\displaystyle \frac {\frac {3 \left (-a^2 d^4 (1-p) p+12 a b c^2 d^2 p+2 b^2 c^4\right ) \int (e x)^{-2 p-1} \left (b x^2+a\right )^pdx+\frac {8 b c d \left (3 b c^2-a d^2 (1-2 p)\right ) \int (e x)^{-2 p} \left (b x^2+a\right )^pdx}{e}+\frac {3 d^2 (e x)^{-2 p} \left (a+b x^2\right )^{p+1} \left (12 b c^2-a d^2 (1-p)\right )}{2 e}}{3 b}+\frac {8 c d^3 (e x)^{1-2 p} \left (a+b x^2\right )^{p+1}}{3 e^2}}{2 b}+\frac {d^4 (e x)^{2-2 p} \left (a+b x^2\right )^{p+1}}{4 b e^3}\)

\(\Big \downarrow \) 279

\(\displaystyle \frac {\frac {3 \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (-a^2 d^4 (1-p) p+12 a b c^2 d^2 p+2 b^2 c^4\right ) \int (e x)^{-2 p-1} \left (\frac {b x^2}{a}+1\right )^pdx+\frac {8 b c d \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (3 b c^2-a d^2 (1-2 p)\right ) \int (e x)^{-2 p} \left (\frac {b x^2}{a}+1\right )^pdx}{e}+\frac {3 d^2 (e x)^{-2 p} \left (a+b x^2\right )^{p+1} \left (12 b c^2-a d^2 (1-p)\right )}{2 e}}{3 b}+\frac {8 c d^3 (e x)^{1-2 p} \left (a+b x^2\right )^{p+1}}{3 e^2}}{2 b}+\frac {d^4 (e x)^{2-2 p} \left (a+b x^2\right )^{p+1}}{4 b e^3}\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {\frac {-\frac {3 (e x)^{-2 p} \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (-a^2 d^4 (1-p) p+12 a b c^2 d^2 p+2 b^2 c^4\right ) \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,-\frac {b x^2}{a}\right )}{2 e p}+\frac {8 b c d (e x)^{1-2 p} \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (3 b c^2-a d^2 (1-2 p)\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (1-2 p),-p,\frac {1}{2} (3-2 p),-\frac {b x^2}{a}\right )}{e^2 (1-2 p)}+\frac {3 d^2 (e x)^{-2 p} \left (a+b x^2\right )^{p+1} \left (12 b c^2-a d^2 (1-p)\right )}{2 e}}{3 b}+\frac {8 c d^3 (e x)^{1-2 p} \left (a+b x^2\right )^{p+1}}{3 e^2}}{2 b}+\frac {d^4 (e x)^{2-2 p} \left (a+b x^2\right )^{p+1}}{4 b e^3}\)

Input:

Int[(e*x)^(-1 - 2*p)*(c + d*x)^4*(a + b*x^2)^p,x]
 

Output:

(d^4*(e*x)^(2 - 2*p)*(a + b*x^2)^(1 + p))/(4*b*e^3) + ((8*c*d^3*(e*x)^(1 - 
 2*p)*(a + b*x^2)^(1 + p))/(3*e^2) + ((3*d^2*(12*b*c^2 - a*d^2*(1 - p))*(a 
 + b*x^2)^(1 + p))/(2*e*(e*x)^(2*p)) + (8*b*c*d*(3*b*c^2 - a*d^2*(1 - 2*p) 
)*(e*x)^(1 - 2*p)*(a + b*x^2)^p*Hypergeometric2F1[(1 - 2*p)/2, -p, (3 - 2* 
p)/2, -((b*x^2)/a)])/(e^2*(1 - 2*p)*(1 + (b*x^2)/a)^p) - (3*(2*b^2*c^4 + 1 
2*a*b*c^2*d^2*p - a^2*d^4*(1 - p)*p)*(a + b*x^2)^p*Hypergeometric2F1[-p, - 
p, 1 - p, -((b*x^2)/a)])/(2*e*p*(e*x)^(2*p)*(1 + (b*x^2)/a)^p))/(3*b))/(2* 
b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 279
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntP 
art[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[(c*x)^m* 
(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && 
!(ILtQ[p, 0] || GtQ[a, 0])
 

rule 557
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[c   Int[(e*x)^m*(a + b*x^2)^p, x], x] + Simp[d/e   Int[(e*x)^( 
m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x]
 

rule 559
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
x_Symbol] :> Simp[d^n*(e*x)^(m + n - 1)*((a + b*x^2)^(p + 1)/(b*e^(n - 1)*( 
m + n + 2*p + 1))), x] + Simp[1/(b*(m + n + 2*p + 1))   Int[(e*x)^m*(a + b* 
x^2)^p*ExpandToSum[b*(m + n + 2*p + 1)*(c + d*x)^n - b*d^n*(m + n + 2*p + 1 
)*x^n - a*d^n*(m + n - 1)*x^(n - 2), x], x], x] /; FreeQ[{a, b, c, d, e, m, 
 p}, x] && IGtQ[n, 1] &&  !IntegerQ[m] && NeQ[m + n + 2*p + 1, 0]
 

rule 2340
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[ 
{q = Expon[Pq, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[f*(c*x)^(m + q - 1 
)*((a + b*x^2)^(p + 1)/(b*c^(q - 1)*(m + q + 2*p + 1))), x] + Simp[1/(b*(m 
+ q + 2*p + 1))   Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1) 
*Pq - b*f*(m + q + 2*p + 1)*x^q - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; 
GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ 
[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])
 
Maple [F]

\[\int \left (e x \right )^{-1-2 p} \left (d x +c \right )^{4} \left (b \,x^{2}+a \right )^{p}d x\]

Input:

int((e*x)^(-1-2*p)*(d*x+c)^4*(b*x^2+a)^p,x)
 

Output:

int((e*x)^(-1-2*p)*(d*x+c)^4*(b*x^2+a)^p,x)
 

Fricas [F]

\[ \int (e x)^{-1-2 p} (c+d x)^4 \left (a+b x^2\right )^p \, dx=\int { {\left (d x + c\right )}^{4} {\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 1} \,d x } \] Input:

integrate((e*x)^(-1-2*p)*(d*x+c)^4*(b*x^2+a)^p,x, algorithm="fricas")
 

Output:

integral((d^4*x^4 + 4*c*d^3*x^3 + 6*c^2*d^2*x^2 + 4*c^3*d*x + c^4)*(b*x^2 
+ a)^p*(e*x)^(-2*p - 1), x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 165.74 (sec) , antiderivative size = 280, normalized size of antiderivative = 0.91 \[ \int (e x)^{-1-2 p} (c+d x)^4 \left (a+b x^2\right )^p \, dx=\frac {a^{p} c^{4} e^{- 2 p - 1} x^{- 2 p} \Gamma \left (- p\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, - p \\ 1 - p \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \Gamma \left (1 - p\right )} + \frac {2 a^{p} c^{3} d e^{- 2 p - 1} x^{1 - 2 p} \Gamma \left (\frac {1}{2} - p\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, \frac {1}{2} - p \\ \frac {3}{2} - p \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{\Gamma \left (\frac {3}{2} - p\right )} + \frac {3 a^{p} c^{2} d^{2} e^{- 2 p - 1} x^{2 - 2 p} \Gamma \left (1 - p\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, 1 - p \\ 2 - p \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{\Gamma \left (2 - p\right )} + \frac {2 a^{p} c d^{3} e^{- 2 p - 1} x^{3 - 2 p} \Gamma \left (\frac {3}{2} - p\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, \frac {3}{2} - p \\ \frac {5}{2} - p \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{\Gamma \left (\frac {5}{2} - p\right )} + \frac {a^{p} d^{4} e^{- 2 p - 1} x^{4 - 2 p} \Gamma \left (2 - p\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, 2 - p \\ 3 - p \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \Gamma \left (3 - p\right )} \] Input:

integrate((e*x)**(-1-2*p)*(d*x+c)**4*(b*x**2+a)**p,x)
 

Output:

a**p*c**4*e**(-2*p - 1)*gamma(-p)*hyper((-p, -p), (1 - p,), b*x**2*exp_pol 
ar(I*pi)/a)/(2*x**(2*p)*gamma(1 - p)) + 2*a**p*c**3*d*e**(-2*p - 1)*x**(1 
- 2*p)*gamma(1/2 - p)*hyper((-p, 1/2 - p), (3/2 - p,), b*x**2*exp_polar(I* 
pi)/a)/gamma(3/2 - p) + 3*a**p*c**2*d**2*e**(-2*p - 1)*x**(2 - 2*p)*gamma( 
1 - p)*hyper((-p, 1 - p), (2 - p,), b*x**2*exp_polar(I*pi)/a)/gamma(2 - p) 
 + 2*a**p*c*d**3*e**(-2*p - 1)*x**(3 - 2*p)*gamma(3/2 - p)*hyper((-p, 3/2 
- p), (5/2 - p,), b*x**2*exp_polar(I*pi)/a)/gamma(5/2 - p) + a**p*d**4*e** 
(-2*p - 1)*x**(4 - 2*p)*gamma(2 - p)*hyper((-p, 2 - p), (3 - p,), b*x**2*e 
xp_polar(I*pi)/a)/(2*gamma(3 - p))
 

Maxima [F]

\[ \int (e x)^{-1-2 p} (c+d x)^4 \left (a+b x^2\right )^p \, dx=\int { {\left (d x + c\right )}^{4} {\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 1} \,d x } \] Input:

integrate((e*x)^(-1-2*p)*(d*x+c)^4*(b*x^2+a)^p,x, algorithm="maxima")
 

Output:

integrate((d*x + c)^4*(b*x^2 + a)^p*(e*x)^(-2*p - 1), x)
 

Giac [F]

\[ \int (e x)^{-1-2 p} (c+d x)^4 \left (a+b x^2\right )^p \, dx=\int { {\left (d x + c\right )}^{4} {\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 1} \,d x } \] Input:

integrate((e*x)^(-1-2*p)*(d*x+c)^4*(b*x^2+a)^p,x, algorithm="giac")
 

Output:

integrate((d*x + c)^4*(b*x^2 + a)^p*(e*x)^(-2*p - 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int (e x)^{-1-2 p} (c+d x)^4 \left (a+b x^2\right )^p \, dx=\int \frac {{\left (b\,x^2+a\right )}^p\,{\left (c+d\,x\right )}^4}{{\left (e\,x\right )}^{2\,p+1}} \,d x \] Input:

int(((a + b*x^2)^p*(c + d*x)^4)/(e*x)^(2*p + 1),x)
 

Output:

int(((a + b*x^2)^p*(c + d*x)^4)/(e*x)^(2*p + 1), x)
 

Reduce [F]

\[ \int (e x)^{-1-2 p} (c+d x)^4 \left (a+b x^2\right )^p \, dx=\frac {32 \left (b \,x^{2}+a \right )^{p} a c \,d^{3} p^{2} x +3 \left (b \,x^{2}+a \right )^{p} a \,d^{4} p^{2} x^{2}-6 \left (b \,x^{2}+a \right )^{p} b \,c^{4}+48 \left (b \,x^{2}+a \right )^{p} b \,c^{3} d p x +36 \left (b \,x^{2}+a \right )^{p} b \,c^{2} d^{2} p \,x^{2}+16 \left (b \,x^{2}+a \right )^{p} b c \,d^{3} p \,x^{3}+3 \left (b \,x^{2}+a \right )^{p} b \,d^{4} p \,x^{4}+64 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} a +x^{2 p} b \,x^{2}}d x \right ) a^{2} c \,d^{3} p^{3}-32 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} a +x^{2 p} b \,x^{2}}d x \right ) a^{2} c \,d^{3} p^{2}+96 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} a +x^{2 p} b \,x^{2}}d x \right ) a b \,c^{3} d \,p^{2}+6 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p} x}{x^{2 p} a +x^{2 p} b \,x^{2}}d x \right ) a^{2} d^{4} p^{3}-6 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p} x}{x^{2 p} a +x^{2 p} b \,x^{2}}d x \right ) a^{2} d^{4} p^{2}+72 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p} x}{x^{2 p} a +x^{2 p} b \,x^{2}}d x \right ) a b \,c^{2} d^{2} p^{2}+12 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p} x}{x^{2 p} a +x^{2 p} b \,x^{2}}d x \right ) b^{2} c^{4} p}{12 x^{2 p} e^{2 p} b e p} \] Input:

int((e*x)^(-1-2*p)*(d*x+c)^4*(b*x^2+a)^p,x)
 

Output:

(32*(a + b*x**2)**p*a*c*d**3*p**2*x + 3*(a + b*x**2)**p*a*d**4*p**2*x**2 - 
 6*(a + b*x**2)**p*b*c**4 + 48*(a + b*x**2)**p*b*c**3*d*p*x + 36*(a + b*x* 
*2)**p*b*c**2*d**2*p*x**2 + 16*(a + b*x**2)**p*b*c*d**3*p*x**3 + 3*(a + b* 
x**2)**p*b*d**4*p*x**4 + 64*x**(2*p)*int((a + b*x**2)**p/(x**(2*p)*a + x** 
(2*p)*b*x**2),x)*a**2*c*d**3*p**3 - 32*x**(2*p)*int((a + b*x**2)**p/(x**(2 
*p)*a + x**(2*p)*b*x**2),x)*a**2*c*d**3*p**2 + 96*x**(2*p)*int((a + b*x**2 
)**p/(x**(2*p)*a + x**(2*p)*b*x**2),x)*a*b*c**3*d*p**2 + 6*x**(2*p)*int((( 
a + b*x**2)**p*x)/(x**(2*p)*a + x**(2*p)*b*x**2),x)*a**2*d**4*p**3 - 6*x** 
(2*p)*int(((a + b*x**2)**p*x)/(x**(2*p)*a + x**(2*p)*b*x**2),x)*a**2*d**4* 
p**2 + 72*x**(2*p)*int(((a + b*x**2)**p*x)/(x**(2*p)*a + x**(2*p)*b*x**2), 
x)*a*b*c**2*d**2*p**2 + 12*x**(2*p)*int(((a + b*x**2)**p*x)/(x**(2*p)*a + 
x**(2*p)*b*x**2),x)*b**2*c**4*p)/(12*x**(2*p)*e**(2*p)*b*e*p)