\(\int \frac {(e x)^{-3-2 p} (a+b x^2)^p}{c+d x} \, dx\) [1908]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 193 \[ \int \frac {(e x)^{-3-2 p} \left (a+b x^2\right )^p}{c+d x} \, dx=-\frac {(e x)^{-2 (1+p)} \left (a+b x^2\right )^{1+p}}{2 a c e (1+p)}+\frac {d (e x)^{-1-2 p} \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2} (-1-2 p),-p,1,\frac {1}{2} (1-2 p),-\frac {b x^2}{a},\frac {d^2 x^2}{c^2}\right )}{c^2 e^2 (1+2 p)}-\frac {d^2 (e x)^{-2 p} \left (a+b x^2\right )^p \operatorname {Hypergeometric2F1}\left (1,-p,1-p,\frac {\left (b+\frac {a d^2}{c^2}\right ) x^2}{a+b x^2}\right )}{2 c^3 e^3 p} \] Output:

-1/2*(b*x^2+a)^(p+1)/a/c/e/(p+1)/((e*x)^(2*p+2))+d*(e*x)^(-1-2*p)*(b*x^2+a 
)^p*AppellF1(-1/2-p,1,-p,1/2-p,d^2*x^2/c^2,-b*x^2/a)/c^2/e^2/(1+2*p)/((1+b 
*x^2/a)^p)-1/2*d^2*(b*x^2+a)^p*hypergeom([1, -p],[1-p],(b+a*d^2/c^2)*x^2/( 
b*x^2+a))/c^3/e^3/p/((e*x)^(2*p))
 

Mathematica [F]

\[ \int \frac {(e x)^{-3-2 p} \left (a+b x^2\right )^p}{c+d x} \, dx=\int \frac {(e x)^{-3-2 p} \left (a+b x^2\right )^p}{c+d x} \, dx \] Input:

Integrate[((e*x)^(-3 - 2*p)*(a + b*x^2)^p)/(c + d*x),x]
 

Output:

Integrate[((e*x)^(-3 - 2*p)*(a + b*x^2)^p)/(c + d*x), x]
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {623, 621, 393, 107, 141, 152, 150}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e x)^{-2 p-3} \left (a+b x^2\right )^p}{c+d x} \, dx\)

\(\Big \downarrow \) 623

\(\displaystyle x^{2 p+3} (e x)^{-2 p-3} \int \frac {x^{-2 p-3} \left (b x^2+a\right )^p}{c+d x}dx\)

\(\Big \downarrow \) 621

\(\displaystyle x^{2 p+3} (e x)^{-2 p-3} \left (c \int \frac {x^{-2 p-3} \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx-d \int \frac {x^{-2 (p+1)} \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx\right )\)

\(\Big \downarrow \) 393

\(\displaystyle x^{2 p+3} (e x)^{-2 p-3} \left (\frac {1}{2} c x^{-2 (p+2)} \left (x^2\right )^{p+2} \int \frac {\left (x^2\right )^{-p-2} \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx^2-\frac {1}{2} d x^{-2 p-3} \left (x^2\right )^{p+\frac {3}{2}} \int \frac {\left (x^2\right )^{-p-\frac {3}{2}} \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx^2\right )\)

\(\Big \downarrow \) 107

\(\displaystyle x^{2 p+3} (e x)^{-2 p-3} \left (\frac {1}{2} c x^{-2 (p+2)} \left (x^2\right )^{p+2} \left (\frac {d^2 \int \frac {\left (x^2\right )^{-p-1} \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx^2}{c^2}-\frac {\left (x^2\right )^{-p-1} \left (a+b x^2\right )^{p+1}}{a c^2 (p+1)}\right )-\frac {1}{2} d x^{-2 p-3} \left (x^2\right )^{p+\frac {3}{2}} \int \frac {\left (x^2\right )^{-p-\frac {3}{2}} \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx^2\right )\)

\(\Big \downarrow \) 141

\(\displaystyle x^{2 p+3} (e x)^{-2 p-3} \left (\frac {1}{2} c x^{-2 (p+2)} \left (x^2\right )^{p+2} \left (-\frac {\left (x^2\right )^{-p-1} \left (a+b x^2\right )^{p+1}}{a c^2 (p+1)}-\frac {d^2 \left (x^2\right )^{-p} \left (a+b x^2\right )^p \operatorname {Hypergeometric2F1}\left (1,-p,1-p,\frac {\left (\frac {a d^2}{c^2}+b\right ) x^2}{b x^2+a}\right )}{c^4 p}\right )-\frac {1}{2} d x^{-2 p-3} \left (x^2\right )^{p+\frac {3}{2}} \int \frac {\left (x^2\right )^{-p-\frac {3}{2}} \left (b x^2+a\right )^p}{c^2-d^2 x^2}dx^2\right )\)

\(\Big \downarrow \) 152

\(\displaystyle x^{2 p+3} (e x)^{-2 p-3} \left (\frac {1}{2} c x^{-2 (p+2)} \left (x^2\right )^{p+2} \left (-\frac {\left (x^2\right )^{-p-1} \left (a+b x^2\right )^{p+1}}{a c^2 (p+1)}-\frac {d^2 \left (x^2\right )^{-p} \left (a+b x^2\right )^p \operatorname {Hypergeometric2F1}\left (1,-p,1-p,\frac {\left (\frac {a d^2}{c^2}+b\right ) x^2}{b x^2+a}\right )}{c^4 p}\right )-\frac {1}{2} d x^{-2 p-3} \left (x^2\right )^{p+\frac {3}{2}} \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \int \frac {\left (x^2\right )^{-p-\frac {3}{2}} \left (\frac {b x^2}{a}+1\right )^p}{c^2-d^2 x^2}dx^2\right )\)

\(\Big \downarrow \) 150

\(\displaystyle x^{2 p+3} (e x)^{-2 p-3} \left (\frac {d x^{-2 p-1} \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {AppellF1}\left (-p-\frac {1}{2},-p,1,\frac {1}{2}-p,-\frac {b x^2}{a},\frac {d^2 x^2}{c^2}\right )}{c^2 (2 p+1)}+\frac {1}{2} c \left (x^2\right )^{p+2} x^{-2 (p+2)} \left (-\frac {\left (x^2\right )^{-p-1} \left (a+b x^2\right )^{p+1}}{a c^2 (p+1)}-\frac {d^2 \left (x^2\right )^{-p} \left (a+b x^2\right )^p \operatorname {Hypergeometric2F1}\left (1,-p,1-p,\frac {\left (\frac {a d^2}{c^2}+b\right ) x^2}{b x^2+a}\right )}{c^4 p}\right )\right )\)

Input:

Int[((e*x)^(-3 - 2*p)*(a + b*x^2)^p)/(c + d*x),x]
 

Output:

x^(3 + 2*p)*(e*x)^(-3 - 2*p)*((d*x^(-1 - 2*p)*(a + b*x^2)^p*AppellF1[-1/2 
- p, -p, 1, 1/2 - p, -((b*x^2)/a), (d^2*x^2)/c^2])/(c^2*(1 + 2*p)*(1 + (b* 
x^2)/a)^p) + (c*(x^2)^(2 + p)*(-(((x^2)^(-1 - p)*(a + b*x^2)^(1 + p))/(a*c 
^2*(1 + p))) - (d^2*(a + b*x^2)^p*Hypergeometric2F1[1, -p, 1 - p, ((b + (a 
*d^2)/c^2)*x^2)/(a + b*x^2)])/(c^4*p*(x^2)^p)))/(2*x^(2*(2 + p))))
 

Defintions of rubi rules used

rule 107
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[(a*d*f*(m + 1) + b*c*f*(n + 
 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 
 1)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x 
] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || SumSimplerQ[m, 1])
 

rule 141
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/((m + 1)*(b*e - a*f)^( 
n + 1)*(e + f*x)^(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2, (-(d*e - c*f 
))*((a + b*x)/((b*c - a*d)*(e + f*x)))], x] /; FreeQ[{a, b, c, d, e, f, m, 
p}, x] && EqQ[m + n + p + 2, 0] && ILtQ[n, 0] && (SumSimplerQ[m, 1] ||  !Su 
mSimplerQ[p, 1]) &&  !ILtQ[m, 0]
 

rule 150
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^n*e^p*((b*x)^(m + 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2 
, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] &&  !In 
tegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])
 

rule 152
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^IntPart[n]*((c + d*x)^FracPart[n]/(1 + d*(x/c))^FracPart[n]) 
Int[(b*x)^m*(1 + d*(x/c))^n*(e + f*x)^p, x], x] /; FreeQ[{b, c, d, e, f, m, 
 n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !GtQ[c, 0]
 

rule 393
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q 
_.), x_Symbol] :> Simp[(e*x)^m/(2*x*(x^2)^(Simplify[(m + 1)/2] - 1))   Subs 
t[Int[x^(Simplify[(m + 1)/2] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] 
/; FreeQ[{a, b, c, d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ[Simp 
lify[m + 2*p]] &&  !IntegerQ[m]
 

rule 621
Int[((x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)), x_Symbol] 
:> Simp[c   Int[x^m*((a + b*x^2)^p/(c^2 - d^2*x^2)), x], x] - Simp[d   Int[ 
x^(m + 1)*((a + b*x^2)^p/(c^2 - d^2*x^2)), x], x] /; FreeQ[{a, b, c, d, m, 
p}, x]
 

rule 623
Int[((e_)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
x_Symbol] :> Simp[(e*x)^m/x^m   Int[x^m*(c + d*x)^n*(a + b*x^2)^p, x], x] / 
; FreeQ[{a, b, c, d, e, m, p}, x] && ILtQ[n, 0]
 
Maple [F]

\[\int \frac {\left (e x \right )^{-3-2 p} \left (b \,x^{2}+a \right )^{p}}{d x +c}d x\]

Input:

int((e*x)^(-3-2*p)*(b*x^2+a)^p/(d*x+c),x)
 

Output:

int((e*x)^(-3-2*p)*(b*x^2+a)^p/(d*x+c),x)
 

Fricas [F]

\[ \int \frac {(e x)^{-3-2 p} \left (a+b x^2\right )^p}{c+d x} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 3}}{d x + c} \,d x } \] Input:

integrate((e*x)^(-3-2*p)*(b*x^2+a)^p/(d*x+c),x, algorithm="fricas")
 

Output:

integral((b*x^2 + a)^p*(e*x)^(-2*p - 3)/(d*x + c), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(e x)^{-3-2 p} \left (a+b x^2\right )^p}{c+d x} \, dx=\text {Timed out} \] Input:

integrate((e*x)**(-3-2*p)*(b*x**2+a)**p/(d*x+c),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(e x)^{-3-2 p} \left (a+b x^2\right )^p}{c+d x} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 3}}{d x + c} \,d x } \] Input:

integrate((e*x)^(-3-2*p)*(b*x^2+a)^p/(d*x+c),x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^p*(e*x)^(-2*p - 3)/(d*x + c), x)
 

Giac [F]

\[ \int \frac {(e x)^{-3-2 p} \left (a+b x^2\right )^p}{c+d x} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 3}}{d x + c} \,d x } \] Input:

integrate((e*x)^(-3-2*p)*(b*x^2+a)^p/(d*x+c),x, algorithm="giac")
 

Output:

integrate((b*x^2 + a)^p*(e*x)^(-2*p - 3)/(d*x + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^{-3-2 p} \left (a+b x^2\right )^p}{c+d x} \, dx=\int \frac {{\left (b\,x^2+a\right )}^p}{{\left (e\,x\right )}^{2\,p+3}\,\left (c+d\,x\right )} \,d x \] Input:

int((a + b*x^2)^p/((e*x)^(2*p + 3)*(c + d*x)),x)
 

Output:

int((a + b*x^2)^p/((e*x)^(2*p + 3)*(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {(e x)^{-3-2 p} \left (a+b x^2\right )^p}{c+d x} \, dx=\frac {\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} c \,x^{3}+x^{2 p} d \,x^{4}}d x}{e^{2 p} e^{3}} \] Input:

int((e*x)^(-3-2*p)*(b*x^2+a)^p/(d*x+c),x)
 

Output:

int((a + b*x**2)**p/(x**(2*p)*c*x**3 + x**(2*p)*d*x**4),x)/(e**(2*p)*e**3)