\(\int \frac {1}{x \sqrt {c+d x} (a+b x^2)} \, dx\) [624]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 432 \[ \int \frac {1}{x \sqrt {c+d x} \left (a+b x^2\right )} \, dx=\frac {\sqrt [4]{b} \sqrt {-\sqrt {b} c+\sqrt {b c^2+a d^2}} \arctan \left (\frac {\sqrt {\sqrt {b} c+\sqrt {b c^2+a d^2}}-\sqrt {2} \sqrt [4]{b} \sqrt {c+d x}}{\sqrt {-\sqrt {b} c+\sqrt {b c^2+a d^2}}}\right )}{\sqrt {2} a \sqrt {b c^2+a d^2}}-\frac {\sqrt [4]{b} \sqrt {-\sqrt {b} c+\sqrt {b c^2+a d^2}} \arctan \left (\frac {\sqrt {\sqrt {b} c+\sqrt {b c^2+a d^2}}+\sqrt {2} \sqrt [4]{b} \sqrt {c+d x}}{\sqrt {-\sqrt {b} c+\sqrt {b c^2+a d^2}}}\right )}{\sqrt {2} a \sqrt {b c^2+a d^2}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {c+d x}}{\sqrt {c}}\right )}{a \sqrt {c}}+\frac {\sqrt [4]{b} \sqrt {\sqrt {b} c+\sqrt {b c^2+a d^2}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {\sqrt {b} c+\sqrt {b c^2+a d^2}} \sqrt {c+d x}}{\sqrt {b c^2+a d^2}+\sqrt {b} (c+d x)}\right )}{\sqrt {2} a \sqrt {b c^2+a d^2}} \] Output:

1/2*b^(1/4)*(-b^(1/2)*c+(a*d^2+b*c^2)^(1/2))^(1/2)*arctan(((b^(1/2)*c+(a*d 
^2+b*c^2)^(1/2))^(1/2)-2^(1/2)*b^(1/4)*(d*x+c)^(1/2))/(-b^(1/2)*c+(a*d^2+b 
*c^2)^(1/2))^(1/2))*2^(1/2)/a/(a*d^2+b*c^2)^(1/2)-1/2*b^(1/4)*(-b^(1/2)*c+ 
(a*d^2+b*c^2)^(1/2))^(1/2)*arctan(((b^(1/2)*c+(a*d^2+b*c^2)^(1/2))^(1/2)+2 
^(1/2)*b^(1/4)*(d*x+c)^(1/2))/(-b^(1/2)*c+(a*d^2+b*c^2)^(1/2))^(1/2))*2^(1 
/2)/a/(a*d^2+b*c^2)^(1/2)-2*arctanh((d*x+c)^(1/2)/c^(1/2))/a/c^(1/2)+1/2*b 
^(1/4)*(b^(1/2)*c+(a*d^2+b*c^2)^(1/2))^(1/2)*arctanh(2^(1/2)*b^(1/4)*(b^(1 
/2)*c+(a*d^2+b*c^2)^(1/2))^(1/2)*(d*x+c)^(1/2)/((a*d^2+b*c^2)^(1/2)+b^(1/2 
)*(d*x+c)))*2^(1/2)/a/(a*d^2+b*c^2)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.56 (sec) , antiderivative size = 198, normalized size of antiderivative = 0.46 \[ \int \frac {1}{x \sqrt {c+d x} \left (a+b x^2\right )} \, dx=\frac {\frac {\sqrt {b} \arctan \left (\frac {\sqrt {-b c-i \sqrt {a} \sqrt {b} d} \sqrt {c+d x}}{\sqrt {b} c+i \sqrt {a} d}\right )}{\sqrt {-b c-i \sqrt {a} \sqrt {b} d}}+\frac {\sqrt {b} \arctan \left (\frac {\sqrt {-b c+i \sqrt {a} \sqrt {b} d} \sqrt {c+d x}}{\sqrt {b} c-i \sqrt {a} d}\right )}{\sqrt {-b c+i \sqrt {a} \sqrt {b} d}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {c+d x}}{\sqrt {c}}\right )}{\sqrt {c}}}{a} \] Input:

Integrate[1/(x*Sqrt[c + d*x]*(a + b*x^2)),x]
 

Output:

((Sqrt[b]*ArcTan[(Sqrt[-(b*c) - I*Sqrt[a]*Sqrt[b]*d]*Sqrt[c + d*x])/(Sqrt[ 
b]*c + I*Sqrt[a]*d)])/Sqrt[-(b*c) - I*Sqrt[a]*Sqrt[b]*d] + (Sqrt[b]*ArcTan 
[(Sqrt[-(b*c) + I*Sqrt[a]*Sqrt[b]*d]*Sqrt[c + d*x])/(Sqrt[b]*c - I*Sqrt[a] 
*d)])/Sqrt[-(b*c) + I*Sqrt[a]*Sqrt[b]*d] - (2*ArcTanh[Sqrt[c + d*x]/Sqrt[c 
]])/Sqrt[c])/a
 

Rubi [A] (verified)

Time = 1.59 (sec) , antiderivative size = 578, normalized size of antiderivative = 1.34, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {561, 25, 27, 1484, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \left (a+b x^2\right ) \sqrt {c+d x}} \, dx\)

\(\Big \downarrow \) 561

\(\displaystyle \frac {2 \int \frac {1}{x \left (\frac {b c^2}{d^2}-\frac {2 b (c+d x) c}{d^2}+\frac {b (c+d x)^2}{d^2}+a\right )}d\sqrt {c+d x}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \int -\frac {1}{x \left (\frac {b c^2}{d^2}-\frac {2 b (c+d x) c}{d^2}+\frac {b (c+d x)^2}{d^2}+a\right )}d\sqrt {c+d x}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle -2 \int -\frac {1}{d x \left (\frac {b c^2}{d^2}-\frac {2 b (c+d x) c}{d^2}+\frac {b (c+d x)^2}{d^2}+a\right )}d\sqrt {c+d x}\)

\(\Big \downarrow \) 1484

\(\displaystyle -2 \int \left (\frac {b d x}{a \left (b c^2-2 b (c+d x) c+a d^2+b (c+d x)^2\right )}-\frac {1}{a d x}\right )d\sqrt {c+d x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -2 \left (-\frac {\sqrt [4]{b} \sqrt {\sqrt {b} c-\sqrt {a d^2+b c^2}} \text {arctanh}\left (\frac {\sqrt {\sqrt {a d^2+b c^2}+\sqrt {b} c}-\sqrt {2} \sqrt [4]{b} \sqrt {c+d x}}{\sqrt {\sqrt {b} c-\sqrt {a d^2+b c^2}}}\right )}{2 \sqrt {2} a \sqrt {a d^2+b c^2}}+\frac {\sqrt [4]{b} \sqrt {\sqrt {b} c-\sqrt {a d^2+b c^2}} \text {arctanh}\left (\frac {\sqrt {\sqrt {a d^2+b c^2}+\sqrt {b} c}+\sqrt {2} \sqrt [4]{b} \sqrt {c+d x}}{\sqrt {\sqrt {b} c-\sqrt {a d^2+b c^2}}}\right )}{2 \sqrt {2} a \sqrt {a d^2+b c^2}}+\frac {\text {arctanh}\left (\frac {\sqrt {c+d x}}{\sqrt {c}}\right )}{a \sqrt {c}}+\frac {\sqrt [4]{b} \sqrt {\sqrt {a d^2+b c^2}+\sqrt {b} c} \log \left (-\sqrt {2} \sqrt [4]{b} \sqrt {c+d x} \sqrt {\sqrt {a d^2+b c^2}+\sqrt {b} c}+\sqrt {a d^2+b c^2}+\sqrt {b} (c+d x)\right )}{4 \sqrt {2} a \sqrt {a d^2+b c^2}}-\frac {\sqrt [4]{b} \sqrt {\sqrt {a d^2+b c^2}+\sqrt {b} c} \log \left (\sqrt {2} \sqrt [4]{b} \sqrt {c+d x} \sqrt {\sqrt {a d^2+b c^2}+\sqrt {b} c}+\sqrt {a d^2+b c^2}+\sqrt {b} (c+d x)\right )}{4 \sqrt {2} a \sqrt {a d^2+b c^2}}\right )\)

Input:

Int[1/(x*Sqrt[c + d*x]*(a + b*x^2)),x]
 

Output:

-2*(ArcTanh[Sqrt[c + d*x]/Sqrt[c]]/(a*Sqrt[c]) - (b^(1/4)*Sqrt[Sqrt[b]*c - 
 Sqrt[b*c^2 + a*d^2]]*ArcTanh[(Sqrt[Sqrt[b]*c + Sqrt[b*c^2 + a*d^2]] - Sqr 
t[2]*b^(1/4)*Sqrt[c + d*x])/Sqrt[Sqrt[b]*c - Sqrt[b*c^2 + a*d^2]]])/(2*Sqr 
t[2]*a*Sqrt[b*c^2 + a*d^2]) + (b^(1/4)*Sqrt[Sqrt[b]*c - Sqrt[b*c^2 + a*d^2 
]]*ArcTanh[(Sqrt[Sqrt[b]*c + Sqrt[b*c^2 + a*d^2]] + Sqrt[2]*b^(1/4)*Sqrt[c 
 + d*x])/Sqrt[Sqrt[b]*c - Sqrt[b*c^2 + a*d^2]]])/(2*Sqrt[2]*a*Sqrt[b*c^2 + 
 a*d^2]) + (b^(1/4)*Sqrt[Sqrt[b]*c + Sqrt[b*c^2 + a*d^2]]*Log[Sqrt[b*c^2 + 
 a*d^2] - Sqrt[2]*b^(1/4)*Sqrt[Sqrt[b]*c + Sqrt[b*c^2 + a*d^2]]*Sqrt[c + d 
*x] + Sqrt[b]*(c + d*x)])/(4*Sqrt[2]*a*Sqrt[b*c^2 + a*d^2]) - (b^(1/4)*Sqr 
t[Sqrt[b]*c + Sqrt[b*c^2 + a*d^2]]*Log[Sqrt[b*c^2 + a*d^2] + Sqrt[2]*b^(1/ 
4)*Sqrt[Sqrt[b]*c + Sqrt[b*c^2 + a*d^2]]*Sqrt[c + d*x] + Sqrt[b]*(c + d*x) 
])/(4*Sqrt[2]*a*Sqrt[b*c^2 + a*d^2]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 561
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> With[{k = Denominator[n]}, Simp[k/d   Subst[Int[x^(k*(n + 1) - 1)*(-c 
/d + x^k/d)^m*Simp[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^k/d^2) + b*(x^(2*k)/d^2), 
 x]^p, x], x, (c + d*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, m, p}, x] && Frac 
tionQ[n] && IntegerQ[p] && IntegerQ[m]
 

rule 1484
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symb 
ol] :> Int[ExpandIntegrand[(d + e*x^2)^q/(a + b*x^2 + c*x^4), x], x] /; Fre 
eQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 
 0] && IntegerQ[q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(728\) vs. \(2(340)=680\).

Time = 0.73 (sec) , antiderivative size = 729, normalized size of antiderivative = 1.69

method result size
pseudoelliptic \(-\frac {\frac {\sqrt {2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}+2 b c}\, \sqrt {4 \sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {b}-2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}-2 b c}\, \left (\left (\sqrt {c}\, \sqrt {a \,d^{2}+b \,c^{2}}+\sqrt {b}\, c^{\frac {3}{2}}\right ) \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}-c^{\frac {3}{2}} \sqrt {a \,d^{2}+b \,c^{2}}\, b -c^{\frac {5}{2}} b^{\frac {3}{2}}\right ) \ln \left (\sqrt {b}\, \left (d x +c \right )-\sqrt {d x +c}\, \sqrt {2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}+2 b c}+\sqrt {a \,d^{2}+b \,c^{2}}\right )}{4}-\frac {\sqrt {2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}+2 b c}\, \sqrt {4 \sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {b}-2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}-2 b c}\, \left (\left (\sqrt {c}\, \sqrt {a \,d^{2}+b \,c^{2}}+\sqrt {b}\, c^{\frac {3}{2}}\right ) \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}-c^{\frac {3}{2}} \sqrt {a \,d^{2}+b \,c^{2}}\, b -c^{\frac {5}{2}} b^{\frac {3}{2}}\right ) \ln \left (\sqrt {b}\, \left (d x +c \right )+\sqrt {d x +c}\, \sqrt {2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}+2 b c}+\sqrt {a \,d^{2}+b \,c^{2}}\right )}{4}+d^{2} \left (2 \sqrt {a \,d^{2}+b \,c^{2}}\, \operatorname {arctanh}\left (\frac {\sqrt {d x +c}}{\sqrt {c}}\right ) \sqrt {4 \sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {b}-2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}-2 b c}\, \sqrt {b}+\left (\sqrt {c}\, \sqrt {a \,d^{2}+b \,c^{2}}\, b -c^{\frac {3}{2}} b^{\frac {3}{2}}\right ) \left (\arctan \left (\frac {2 \sqrt {b}\, \sqrt {d x +c}+\sqrt {2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}+2 b c}}{\sqrt {4 \sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {b}-2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}-2 b c}}\right )-\arctan \left (\frac {-2 \sqrt {b}\, \sqrt {d x +c}+\sqrt {2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}+2 b c}}{\sqrt {4 \sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {b}-2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}-2 b c}}\right )\right )\right ) a}{\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {4 \sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {b}-2 \sqrt {\left (a \,d^{2}+b \,c^{2}\right ) b}-2 b c}\, \sqrt {c}\, d^{2} a^{2}}\) \(729\)
derivativedivides \(\text {Expression too large to display}\) \(2084\)
default \(\text {Expression too large to display}\) \(2084\)

Input:

int(1/x/(d*x+c)^(1/2)/(b*x^2+a),x,method=_RETURNVERBOSE)
 

Output:

-(1/4*(2*((a*d^2+b*c^2)*b)^(1/2)+2*b*c)^(1/2)*(4*(a*d^2+b*c^2)^(1/2)*b^(1/ 
2)-2*((a*d^2+b*c^2)*b)^(1/2)-2*b*c)^(1/2)*((c^(1/2)*(a*d^2+b*c^2)^(1/2)+b^ 
(1/2)*c^(3/2))*((a*d^2+b*c^2)*b)^(1/2)-c^(3/2)*(a*d^2+b*c^2)^(1/2)*b-c^(5/ 
2)*b^(3/2))*ln(b^(1/2)*(d*x+c)-(d*x+c)^(1/2)*(2*((a*d^2+b*c^2)*b)^(1/2)+2* 
b*c)^(1/2)+(a*d^2+b*c^2)^(1/2))-1/4*(2*((a*d^2+b*c^2)*b)^(1/2)+2*b*c)^(1/2 
)*(4*(a*d^2+b*c^2)^(1/2)*b^(1/2)-2*((a*d^2+b*c^2)*b)^(1/2)-2*b*c)^(1/2)*(( 
c^(1/2)*(a*d^2+b*c^2)^(1/2)+b^(1/2)*c^(3/2))*((a*d^2+b*c^2)*b)^(1/2)-c^(3/ 
2)*(a*d^2+b*c^2)^(1/2)*b-c^(5/2)*b^(3/2))*ln(b^(1/2)*(d*x+c)+(d*x+c)^(1/2) 
*(2*((a*d^2+b*c^2)*b)^(1/2)+2*b*c)^(1/2)+(a*d^2+b*c^2)^(1/2))+d^2*(2*(a*d^ 
2+b*c^2)^(1/2)*arctanh((d*x+c)^(1/2)/c^(1/2))*(4*(a*d^2+b*c^2)^(1/2)*b^(1/ 
2)-2*((a*d^2+b*c^2)*b)^(1/2)-2*b*c)^(1/2)*b^(1/2)+(c^(1/2)*(a*d^2+b*c^2)^( 
1/2)*b-c^(3/2)*b^(3/2))*(arctan((2*b^(1/2)*(d*x+c)^(1/2)+(2*((a*d^2+b*c^2) 
*b)^(1/2)+2*b*c)^(1/2))/(4*(a*d^2+b*c^2)^(1/2)*b^(1/2)-2*((a*d^2+b*c^2)*b) 
^(1/2)-2*b*c)^(1/2))-arctan((-2*b^(1/2)*(d*x+c)^(1/2)+(2*((a*d^2+b*c^2)*b) 
^(1/2)+2*b*c)^(1/2))/(4*(a*d^2+b*c^2)^(1/2)*b^(1/2)-2*((a*d^2+b*c^2)*b)^(1 
/2)-2*b*c)^(1/2))))*a)/b^(1/2)/(a*d^2+b*c^2)^(1/2)/(4*(a*d^2+b*c^2)^(1/2)* 
b^(1/2)-2*((a*d^2+b*c^2)*b)^(1/2)-2*b*c)^(1/2)/c^(1/2)/d^2/a^2
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1004 vs. \(2 (342) = 684\).

Time = 0.15 (sec) , antiderivative size = 2017, normalized size of antiderivative = 4.67 \[ \int \frac {1}{x \sqrt {c+d x} \left (a+b x^2\right )} \, dx=\text {Too large to display} \] Input:

integrate(1/x/(d*x+c)^(1/2)/(b*x^2+a),x, algorithm="fricas")
 

Output:

[1/2*(a*c*sqrt((b*c + (a^2*b*c^2 + a^3*d^2)*sqrt(-b*d^2/(a^3*b^2*c^4 + 2*a 
^4*b*c^2*d^2 + a^5*d^4)))/(a^2*b*c^2 + a^3*d^2))*log(sqrt(d*x + c)*b + (a* 
b*c - (a^3*b*c^2 + a^4*d^2)*sqrt(-b*d^2/(a^3*b^2*c^4 + 2*a^4*b*c^2*d^2 + a 
^5*d^4)))*sqrt((b*c + (a^2*b*c^2 + a^3*d^2)*sqrt(-b*d^2/(a^3*b^2*c^4 + 2*a 
^4*b*c^2*d^2 + a^5*d^4)))/(a^2*b*c^2 + a^3*d^2))) - a*c*sqrt((b*c + (a^2*b 
*c^2 + a^3*d^2)*sqrt(-b*d^2/(a^3*b^2*c^4 + 2*a^4*b*c^2*d^2 + a^5*d^4)))/(a 
^2*b*c^2 + a^3*d^2))*log(sqrt(d*x + c)*b - (a*b*c - (a^3*b*c^2 + a^4*d^2)* 
sqrt(-b*d^2/(a^3*b^2*c^4 + 2*a^4*b*c^2*d^2 + a^5*d^4)))*sqrt((b*c + (a^2*b 
*c^2 + a^3*d^2)*sqrt(-b*d^2/(a^3*b^2*c^4 + 2*a^4*b*c^2*d^2 + a^5*d^4)))/(a 
^2*b*c^2 + a^3*d^2))) + a*c*sqrt((b*c - (a^2*b*c^2 + a^3*d^2)*sqrt(-b*d^2/ 
(a^3*b^2*c^4 + 2*a^4*b*c^2*d^2 + a^5*d^4)))/(a^2*b*c^2 + a^3*d^2))*log(sqr 
t(d*x + c)*b + (a*b*c + (a^3*b*c^2 + a^4*d^2)*sqrt(-b*d^2/(a^3*b^2*c^4 + 2 
*a^4*b*c^2*d^2 + a^5*d^4)))*sqrt((b*c - (a^2*b*c^2 + a^3*d^2)*sqrt(-b*d^2/ 
(a^3*b^2*c^4 + 2*a^4*b*c^2*d^2 + a^5*d^4)))/(a^2*b*c^2 + a^3*d^2))) - a*c* 
sqrt((b*c - (a^2*b*c^2 + a^3*d^2)*sqrt(-b*d^2/(a^3*b^2*c^4 + 2*a^4*b*c^2*d 
^2 + a^5*d^4)))/(a^2*b*c^2 + a^3*d^2))*log(sqrt(d*x + c)*b - (a*b*c + (a^3 
*b*c^2 + a^4*d^2)*sqrt(-b*d^2/(a^3*b^2*c^4 + 2*a^4*b*c^2*d^2 + a^5*d^4)))* 
sqrt((b*c - (a^2*b*c^2 + a^3*d^2)*sqrt(-b*d^2/(a^3*b^2*c^4 + 2*a^4*b*c^2*d 
^2 + a^5*d^4)))/(a^2*b*c^2 + a^3*d^2))) + 2*sqrt(c)*log((d*x - 2*sqrt(d*x 
+ c)*sqrt(c) + 2*c)/x))/(a*c), 1/2*(a*c*sqrt((b*c + (a^2*b*c^2 + a^3*d^...
 

Sympy [F]

\[ \int \frac {1}{x \sqrt {c+d x} \left (a+b x^2\right )} \, dx=\int \frac {1}{x \left (a + b x^{2}\right ) \sqrt {c + d x}}\, dx \] Input:

integrate(1/x/(d*x+c)**(1/2)/(b*x**2+a),x)
 

Output:

Integral(1/(x*(a + b*x**2)*sqrt(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {1}{x \sqrt {c+d x} \left (a+b x^2\right )} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )} \sqrt {d x + c} x} \,d x } \] Input:

integrate(1/x/(d*x+c)^(1/2)/(b*x^2+a),x, algorithm="maxima")
 

Output:

integrate(1/((b*x^2 + a)*sqrt(d*x + c)*x), x)
 

Giac [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 250, normalized size of antiderivative = 0.58 \[ \int \frac {1}{x \sqrt {c+d x} \left (a+b x^2\right )} \, dx=-\frac {{\left ({\left | a \right |} {\left | b \right |} {\left | d \right |} + \sqrt {-a b} c {\left | b \right |}\right )} \arctan \left (\frac {\sqrt {d x + c}}{\sqrt {-\frac {a b c + \sqrt {a^{2} b^{2} c^{2} - {\left (a b c^{2} + a^{2} d^{2}\right )} a b}}{a b}}}\right )}{\sqrt {-b^{2} c - \sqrt {-a b} b d} {\left (a^{2} d + \sqrt {-a b} a c\right )}} - \frac {{\left ({\left | a \right |} {\left | b \right |} {\left | d \right |} - \sqrt {-a b} c {\left | b \right |}\right )} \arctan \left (\frac {\sqrt {d x + c}}{\sqrt {-\frac {a b c - \sqrt {a^{2} b^{2} c^{2} - {\left (a b c^{2} + a^{2} d^{2}\right )} a b}}{a b}}}\right )}{\sqrt {-b^{2} c + \sqrt {-a b} b d} {\left (a^{2} d - \sqrt {-a b} a c\right )}} + \frac {2 \, \arctan \left (\frac {\sqrt {d x + c}}{\sqrt {-c}}\right )}{a \sqrt {-c}} \] Input:

integrate(1/x/(d*x+c)^(1/2)/(b*x^2+a),x, algorithm="giac")
 

Output:

-(abs(a)*abs(b)*abs(d) + sqrt(-a*b)*c*abs(b))*arctan(sqrt(d*x + c)/sqrt(-( 
a*b*c + sqrt(a^2*b^2*c^2 - (a*b*c^2 + a^2*d^2)*a*b))/(a*b)))/(sqrt(-b^2*c 
- sqrt(-a*b)*b*d)*(a^2*d + sqrt(-a*b)*a*c)) - (abs(a)*abs(b)*abs(d) - sqrt 
(-a*b)*c*abs(b))*arctan(sqrt(d*x + c)/sqrt(-(a*b*c - sqrt(a^2*b^2*c^2 - (a 
*b*c^2 + a^2*d^2)*a*b))/(a*b)))/(sqrt(-b^2*c + sqrt(-a*b)*b*d)*(a^2*d - sq 
rt(-a*b)*a*c)) + 2*arctan(sqrt(d*x + c)/sqrt(-c))/(a*sqrt(-c))
 

Mupad [B] (verification not implemented)

Time = 8.65 (sec) , antiderivative size = 2735, normalized size of antiderivative = 6.33 \[ \int \frac {1}{x \sqrt {c+d x} \left (a+b x^2\right )} \, dx=\text {Too large to display} \] Input:

int(1/(x*(a + b*x^2)*(c + d*x)^(1/2)),x)
 

Output:

atan((((((512*a^4*b^4*d^10 + (512*a^5*b^4*d^10 + 768*a^4*b^5*c^2*d^8)*(c + 
 d*x)^(1/2)*((d*(-a^5*b)^(1/2) + a^2*b*c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/2) 
 + 384*a^3*b^5*c^2*d^8)*((d*(-a^5*b)^(1/2) + a^2*b*c)/(4*(a^5*d^2 + a^4*b* 
c^2)))^(1/2) - 576*a^2*b^5*c*d^8*(c + d*x)^(1/2))*((d*(-a^5*b)^(1/2) + a^2 
*b*c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/2) - 96*a*b^5*c*d^8)*((d*(-a^5*b)^(1/2 
) + a^2*b*c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/2) + 96*b^5*d^8*(c + d*x)^(1/2) 
)*((d*(-a^5*b)^(1/2) + a^2*b*c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/2)*1i - (((( 
512*a^4*b^4*d^10 - (512*a^5*b^4*d^10 + 768*a^4*b^5*c^2*d^8)*(c + d*x)^(1/2 
)*((d*(-a^5*b)^(1/2) + a^2*b*c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/2) + 384*a^3 
*b^5*c^2*d^8)*((d*(-a^5*b)^(1/2) + a^2*b*c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/ 
2) + 576*a^2*b^5*c*d^8*(c + d*x)^(1/2))*((d*(-a^5*b)^(1/2) + a^2*b*c)/(4*( 
a^5*d^2 + a^4*b*c^2)))^(1/2) - 96*a*b^5*c*d^8)*((d*(-a^5*b)^(1/2) + a^2*b* 
c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/2) - 96*b^5*d^8*(c + d*x)^(1/2))*((d*(-a^ 
5*b)^(1/2) + a^2*b*c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/2)*1i)/(((((512*a^4*b^ 
4*d^10 + (512*a^5*b^4*d^10 + 768*a^4*b^5*c^2*d^8)*(c + d*x)^(1/2)*((d*(-a^ 
5*b)^(1/2) + a^2*b*c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/2) + 384*a^3*b^5*c^2*d 
^8)*((d*(-a^5*b)^(1/2) + a^2*b*c)/(4*(a^5*d^2 + a^4*b*c^2)))^(1/2) - 576*a 
^2*b^5*c*d^8*(c + d*x)^(1/2))*((d*(-a^5*b)^(1/2) + a^2*b*c)/(4*(a^5*d^2 + 
a^4*b*c^2)))^(1/2) - 96*a*b^5*c*d^8)*((d*(-a^5*b)^(1/2) + a^2*b*c)/(4*(a^5 
*d^2 + a^4*b*c^2)))^(1/2) + 96*b^5*d^8*(c + d*x)^(1/2))*((d*(-a^5*b)^(1...
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 478, normalized size of antiderivative = 1.11 \[ \int \frac {1}{x \sqrt {c+d x} \left (a+b x^2\right )} \, dx=\frac {2 \sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}-b c}\, \sqrt {2}\, \mathit {atan} \left (\frac {\sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}+b c}\, \sqrt {2}-2 \sqrt {b}\, \sqrt {d x +c}}{\sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}-b c}\, \sqrt {2}}\right ) c -2 \sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}-b c}\, \sqrt {2}\, \mathit {atan} \left (\frac {\sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}+b c}\, \sqrt {2}+2 \sqrt {b}\, \sqrt {d x +c}}{\sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}-b c}\, \sqrt {2}}\right ) c -\sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}+b c}\, \sqrt {2}\, \mathrm {log}\left (-\sqrt {d x +c}\, \sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}+b c}\, \sqrt {2}+\sqrt {a \,d^{2}+b \,c^{2}}+\sqrt {b}\, c +\sqrt {b}\, d x \right ) c +\sqrt {a \,d^{2}+b \,c^{2}}\, \sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}+b c}\, \sqrt {2}\, \mathrm {log}\left (\sqrt {d x +c}\, \sqrt {\sqrt {b}\, \sqrt {a \,d^{2}+b \,c^{2}}+b c}\, \sqrt {2}+\sqrt {a \,d^{2}+b \,c^{2}}+\sqrt {b}\, c +\sqrt {b}\, d x \right ) c +4 \sqrt {c}\, \mathrm {log}\left (\sqrt {d x +c}-\sqrt {c}\right ) a \,d^{2}+4 \sqrt {c}\, \mathrm {log}\left (\sqrt {d x +c}-\sqrt {c}\right ) b \,c^{2}-4 \sqrt {c}\, \mathrm {log}\left (\sqrt {d x +c}+\sqrt {c}\right ) a \,d^{2}-4 \sqrt {c}\, \mathrm {log}\left (\sqrt {d x +c}+\sqrt {c}\right ) b \,c^{2}}{4 a c \left (a \,d^{2}+b \,c^{2}\right )} \] Input:

int(1/x/(d*x+c)^(1/2)/(b*x^2+a),x)
 

Output:

(2*sqrt(a*d**2 + b*c**2)*sqrt(sqrt(b)*sqrt(a*d**2 + b*c**2) - b*c)*sqrt(2) 
*atan((sqrt(sqrt(b)*sqrt(a*d**2 + b*c**2) + b*c)*sqrt(2) - 2*sqrt(b)*sqrt( 
c + d*x))/(sqrt(sqrt(b)*sqrt(a*d**2 + b*c**2) - b*c)*sqrt(2)))*c - 2*sqrt( 
a*d**2 + b*c**2)*sqrt(sqrt(b)*sqrt(a*d**2 + b*c**2) - b*c)*sqrt(2)*atan((s 
qrt(sqrt(b)*sqrt(a*d**2 + b*c**2) + b*c)*sqrt(2) + 2*sqrt(b)*sqrt(c + d*x) 
)/(sqrt(sqrt(b)*sqrt(a*d**2 + b*c**2) - b*c)*sqrt(2)))*c - sqrt(a*d**2 + b 
*c**2)*sqrt(sqrt(b)*sqrt(a*d**2 + b*c**2) + b*c)*sqrt(2)*log( - sqrt(c + d 
*x)*sqrt(sqrt(b)*sqrt(a*d**2 + b*c**2) + b*c)*sqrt(2) + sqrt(a*d**2 + b*c* 
*2) + sqrt(b)*c + sqrt(b)*d*x)*c + sqrt(a*d**2 + b*c**2)*sqrt(sqrt(b)*sqrt 
(a*d**2 + b*c**2) + b*c)*sqrt(2)*log(sqrt(c + d*x)*sqrt(sqrt(b)*sqrt(a*d** 
2 + b*c**2) + b*c)*sqrt(2) + sqrt(a*d**2 + b*c**2) + sqrt(b)*c + sqrt(b)*d 
*x)*c + 4*sqrt(c)*log(sqrt(c + d*x) - sqrt(c))*a*d**2 + 4*sqrt(c)*log(sqrt 
(c + d*x) - sqrt(c))*b*c**2 - 4*sqrt(c)*log(sqrt(c + d*x) + sqrt(c))*a*d** 
2 - 4*sqrt(c)*log(sqrt(c + d*x) + sqrt(c))*b*c**2)/(4*a*c*(a*d**2 + b*c**2 
))