\(\int \frac {(e x)^m}{\sqrt {c+d x} (a+b x^2)} \, dx\) [145]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 152 \[ \int \frac {(e x)^m}{\sqrt {c+d x} \left (a+b x^2\right )} \, dx=\frac {(e x)^{1+m} \sqrt {1+\frac {d x}{c}} \operatorname {AppellF1}\left (1+m,\frac {1}{2},1,2+m,-\frac {d x}{c},-\frac {\sqrt {b} x}{\sqrt {-a}}\right )}{2 a e (1+m) \sqrt {c+d x}}+\frac {(e x)^{1+m} \sqrt {1+\frac {d x}{c}} \operatorname {AppellF1}\left (1+m,\frac {1}{2},1,2+m,-\frac {d x}{c},\frac {\sqrt {b} x}{\sqrt {-a}}\right )}{2 a e (1+m) \sqrt {c+d x}} \] Output:

1/2*(e*x)^(1+m)*(1+d*x/c)^(1/2)*AppellF1(1+m,1,1/2,2+m,-b^(1/2)*x/(-a)^(1/ 
2),-d*x/c)/a/e/(1+m)/(d*x+c)^(1/2)+1/2*(e*x)^(1+m)*(1+d*x/c)^(1/2)*AppellF 
1(1+m,1,1/2,2+m,b^(1/2)*x/(-a)^(1/2),-d*x/c)/a/e/(1+m)/(d*x+c)^(1/2)
 

Mathematica [F]

\[ \int \frac {(e x)^m}{\sqrt {c+d x} \left (a+b x^2\right )} \, dx=\int \frac {(e x)^m}{\sqrt {c+d x} \left (a+b x^2\right )} \, dx \] Input:

Integrate[(e*x)^m/(Sqrt[c + d*x]*(a + b*x^2)),x]
 

Output:

Integrate[(e*x)^m/(Sqrt[c + d*x]*(a + b*x^2)), x]
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {615, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e x)^m}{\left (a+b x^2\right ) \sqrt {c+d x}} \, dx\)

\(\Big \downarrow \) 615

\(\displaystyle \int \left (\frac {\sqrt {-a} (e x)^m}{2 a \left (\sqrt {-a}-\sqrt {b} x\right ) \sqrt {c+d x}}+\frac {\sqrt {-a} (e x)^m}{2 a \left (\sqrt {-a}+\sqrt {b} x\right ) \sqrt {c+d x}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {\frac {d x}{c}+1} (e x)^{m+1} \operatorname {AppellF1}\left (m+1,\frac {1}{2},1,m+2,-\frac {d x}{c},-\frac {\sqrt {b} x}{\sqrt {-a}}\right )}{2 a e (m+1) \sqrt {c+d x}}+\frac {\sqrt {\frac {d x}{c}+1} (e x)^{m+1} \operatorname {AppellF1}\left (m+1,\frac {1}{2},1,m+2,-\frac {d x}{c},\frac {\sqrt {b} x}{\sqrt {-a}}\right )}{2 a e (m+1) \sqrt {c+d x}}\)

Input:

Int[(e*x)^m/(Sqrt[c + d*x]*(a + b*x^2)),x]
 

Output:

((e*x)^(1 + m)*Sqrt[1 + (d*x)/c]*AppellF1[1 + m, 1/2, 1, 2 + m, -((d*x)/c) 
, -((Sqrt[b]*x)/Sqrt[-a])])/(2*a*e*(1 + m)*Sqrt[c + d*x]) + ((e*x)^(1 + m) 
*Sqrt[1 + (d*x)/c]*AppellF1[1 + m, 1/2, 1, 2 + m, -((d*x)/c), (Sqrt[b]*x)/ 
Sqrt[-a]])/(2*a*e*(1 + m)*Sqrt[c + d*x])
 

Defintions of rubi rules used

rule 615
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
 x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] 
 /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [F]

\[\int \frac {\left (e x \right )^{m}}{\sqrt {d x +c}\, \left (b \,x^{2}+a \right )}d x\]

Input:

int((e*x)^m/(d*x+c)^(1/2)/(b*x^2+a),x)
 

Output:

int((e*x)^m/(d*x+c)^(1/2)/(b*x^2+a),x)
 

Fricas [F]

\[ \int \frac {(e x)^m}{\sqrt {c+d x} \left (a+b x^2\right )} \, dx=\int { \frac {\left (e x\right )^{m}}{{\left (b x^{2} + a\right )} \sqrt {d x + c}} \,d x } \] Input:

integrate((e*x)^m/(d*x+c)^(1/2)/(b*x^2+a),x, algorithm="fricas")
 

Output:

integral(sqrt(d*x + c)*(e*x)^m/(b*d*x^3 + b*c*x^2 + a*d*x + a*c), x)
 

Sympy [F]

\[ \int \frac {(e x)^m}{\sqrt {c+d x} \left (a+b x^2\right )} \, dx=\int \frac {\left (e x\right )^{m}}{\left (a + b x^{2}\right ) \sqrt {c + d x}}\, dx \] Input:

integrate((e*x)**m/(d*x+c)**(1/2)/(b*x**2+a),x)
 

Output:

Integral((e*x)**m/((a + b*x**2)*sqrt(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {(e x)^m}{\sqrt {c+d x} \left (a+b x^2\right )} \, dx=\int { \frac {\left (e x\right )^{m}}{{\left (b x^{2} + a\right )} \sqrt {d x + c}} \,d x } \] Input:

integrate((e*x)^m/(d*x+c)^(1/2)/(b*x^2+a),x, algorithm="maxima")
 

Output:

integrate((e*x)^m/((b*x^2 + a)*sqrt(d*x + c)), x)
 

Giac [F]

\[ \int \frac {(e x)^m}{\sqrt {c+d x} \left (a+b x^2\right )} \, dx=\int { \frac {\left (e x\right )^{m}}{{\left (b x^{2} + a\right )} \sqrt {d x + c}} \,d x } \] Input:

integrate((e*x)^m/(d*x+c)^(1/2)/(b*x^2+a),x, algorithm="giac")
 

Output:

integrate((e*x)^m/((b*x^2 + a)*sqrt(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^m}{\sqrt {c+d x} \left (a+b x^2\right )} \, dx=\int \frac {{\left (e\,x\right )}^m}{\left (b\,x^2+a\right )\,\sqrt {c+d\,x}} \,d x \] Input:

int((e*x)^m/((a + b*x^2)*(c + d*x)^(1/2)),x)
 

Output:

int((e*x)^m/((a + b*x^2)*(c + d*x)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {(e x)^m}{\sqrt {c+d x} \left (a+b x^2\right )} \, dx=e^{m} \left (\int \frac {x^{m} \sqrt {d x +c}}{b d \,x^{3}+b c \,x^{2}+a d x +a c}d x \right ) \] Input:

int((e*x)^m/(d*x+c)^(1/2)/(b*x^2+a),x)
 

Output:

e**m*int((x**m*sqrt(c + d*x))/(a*c + a*d*x + b*c*x**2 + b*d*x**3),x)