\(\int \frac {(c+d x)^n (a+b x^2)^2}{x^5} \, dx\) [201]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [B] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 189 \[ \int \frac {(c+d x)^n \left (a+b x^2\right )^2}{x^5} \, dx=-\frac {a^2 (c+d x)^{1+n}}{4 c x^4}+\frac {a^2 d (3-n) (c+d x)^{1+n}}{12 c^2 x^3}-\frac {b^2 c (c+d x)^{1+n}}{d^2 (1-n) n x^2}+\frac {b^2 (c+d x)^{1+n}}{d n x}+\frac {\left (24 b^2 c^4-a d^2 (1-n) n \left (24 b c^2+a d^2 \left (6-5 n+n^2\right )\right )\right ) (c+d x)^{1+n} \operatorname {Hypergeometric2F1}\left (3,1+n,2+n,1+\frac {d x}{c}\right )}{12 c^5 n \left (1-n^2\right )} \] Output:

-1/4*a^2*(d*x+c)^(1+n)/c/x^4+1/12*a^2*d*(3-n)*(d*x+c)^(1+n)/c^2/x^3-b^2*c* 
(d*x+c)^(1+n)/d^2/(1-n)/n/x^2+b^2*(d*x+c)^(1+n)/d/n/x+1/12*(24*b^2*c^4-a*d 
^2*(1-n)*n*(24*b*c^2+a*d^2*(n^2-5*n+6)))*(d*x+c)^(1+n)*hypergeom([3, 1+n], 
[2+n],1+d*x/c)/c^5/n/(-n^2+1)
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.49 \[ \int \frac {(c+d x)^n \left (a+b x^2\right )^2}{x^5} \, dx=-\frac {(c+d x)^{1+n} \left (b^2 c^4 \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,1+\frac {d x}{c}\right )+a d^2 \left (2 b c^2 \operatorname {Hypergeometric2F1}\left (3,1+n,2+n,1+\frac {d x}{c}\right )+a d^2 \operatorname {Hypergeometric2F1}\left (5,1+n,2+n,1+\frac {d x}{c}\right )\right )\right )}{c^5 (1+n)} \] Input:

Integrate[((c + d*x)^n*(a + b*x^2)^2)/x^5,x]
 

Output:

-(((c + d*x)^(1 + n)*(b^2*c^4*Hypergeometric2F1[1, 1 + n, 2 + n, 1 + (d*x) 
/c] + a*d^2*(2*b*c^2*Hypergeometric2F1[3, 1 + n, 2 + n, 1 + (d*x)/c] + a*d 
^2*Hypergeometric2F1[5, 1 + n, 2 + n, 1 + (d*x)/c])))/(c^5*(1 + n)))
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.24, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {520, 2124, 520, 87, 75}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^2\right )^2 (c+d x)^n}{x^5} \, dx\)

\(\Big \downarrow \) 520

\(\displaystyle -\frac {\int \frac {(c+d x)^n \left (-4 b^2 c x^3-8 a b c x+a^2 d (3-n)\right )}{x^4}dx}{4 c}-\frac {a^2 (c+d x)^{n+1}}{4 c x^4}\)

\(\Big \downarrow \) 2124

\(\displaystyle -\frac {-\frac {\int \frac {(c+d x)^n \left (12 b^2 c^2 x^2+a \left (24 b c^2+a d^2 \left (n^2-5 n+6\right )\right )\right )}{x^3}dx}{3 c}-\frac {a^2 d (3-n) (c+d x)^{n+1}}{3 c x^3}}{4 c}-\frac {a^2 (c+d x)^{n+1}}{4 c x^4}\)

\(\Big \downarrow \) 520

\(\displaystyle -\frac {-\frac {-\frac {\int \frac {\left (a d (1-n) \left (24 b c^2+a d^2 \left (n^2-5 n+6\right )\right )-24 b^2 c^3 x\right ) (c+d x)^n}{x^2}dx}{2 c}-\frac {a (c+d x)^{n+1} \left (a d^2 \left (n^2-5 n+6\right )+24 b c^2\right )}{2 c x^2}}{3 c}-\frac {a^2 d (3-n) (c+d x)^{n+1}}{3 c x^3}}{4 c}-\frac {a^2 (c+d x)^{n+1}}{4 c x^4}\)

\(\Big \downarrow \) 87

\(\displaystyle -\frac {-\frac {-\frac {-\frac {\left (24 b^2 c^4-a d^2 (1-n) n \left (a d^2 \left (n^2-5 n+6\right )+24 b c^2\right )\right ) \int \frac {(c+d x)^n}{x}dx}{c}-\frac {a d (1-n) (c+d x)^{n+1} \left (a d^2 \left (n^2-5 n+6\right )+24 b c^2\right )}{c x}}{2 c}-\frac {a (c+d x)^{n+1} \left (a d^2 \left (n^2-5 n+6\right )+24 b c^2\right )}{2 c x^2}}{3 c}-\frac {a^2 d (3-n) (c+d x)^{n+1}}{3 c x^3}}{4 c}-\frac {a^2 (c+d x)^{n+1}}{4 c x^4}\)

\(\Big \downarrow \) 75

\(\displaystyle -\frac {-\frac {a^2 d (3-n) (c+d x)^{n+1}}{3 c x^3}-\frac {-\frac {\frac {(c+d x)^{n+1} \left (24 b^2 c^4-a d^2 (1-n) n \left (a d^2 \left (n^2-5 n+6\right )+24 b c^2\right )\right ) \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {d x}{c}+1\right )}{c^2 (n+1)}-\frac {a d (1-n) (c+d x)^{n+1} \left (a d^2 \left (n^2-5 n+6\right )+24 b c^2\right )}{c x}}{2 c}-\frac {a (c+d x)^{n+1} \left (a d^2 \left (n^2-5 n+6\right )+24 b c^2\right )}{2 c x^2}}{3 c}}{4 c}-\frac {a^2 (c+d x)^{n+1}}{4 c x^4}\)

Input:

Int[((c + d*x)^n*(a + b*x^2)^2)/x^5,x]
 

Output:

-1/4*(a^2*(c + d*x)^(1 + n))/(c*x^4) - (-1/3*(a^2*d*(3 - n)*(c + d*x)^(1 + 
 n))/(c*x^3) - (-1/2*(a*(24*b*c^2 + a*d^2*(6 - 5*n + n^2))*(c + d*x)^(1 + 
n))/(c*x^2) - (-((a*d*(1 - n)*(24*b*c^2 + a*d^2*(6 - 5*n + n^2))*(c + d*x) 
^(1 + n))/(c*x)) + ((24*b^2*c^4 - a*d^2*(1 - n)*n*(24*b*c^2 + a*d^2*(6 - 5 
*n + n^2)))*(c + d*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, 1 + (d*x) 
/c])/(c^2*(1 + n)))/(2*c))/(3*c))/(4*c)
 

Defintions of rubi rules used

rule 75
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x 
)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))*Hypergeometric2F1[-m, n + 1, n + 2, 1 + 
 d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (IntegerQ[m] 
 || GtQ[-d/(b*c), 0])
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 520
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), 
 x_Symbol] :> With[{Qx = PolynomialQuotient[(a + b*x^2)^p, e*x, x], R = Pol 
ynomialRemainder[(a + b*x^2)^p, e*x, x]}, Simp[R*(e*x)^(m + 1)*((c + d*x)^( 
n + 1)/((m + 1)*(e*c))), x] + Simp[1/((m + 1)*(e*c))   Int[(e*x)^(m + 1)*(c 
 + d*x)^n*ExpandToSum[(m + 1)*(e*c)*Qx - d*R*(m + n + 2), x], x], x]] /; Fr 
eeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[m, -1] &&  !IntegerQ[n]
 

rule 2124
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] : 
> With[{Qx = PolynomialQuotient[Px, a + b*x, x], R = PolynomialRemainder[Px 
, a + b*x, x]}, Simp[R*(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((m + 1)*(b*c - 
 a*d))), x] + Simp[1/((m + 1)*(b*c - a*d))   Int[(a + b*x)^(m + 1)*(c + d*x 
)^n*ExpandToSum[(m + 1)*(b*c - a*d)*Qx - d*R*(m + n + 2), x], x], x]] /; Fr 
eeQ[{a, b, c, d, n}, x] && PolyQ[Px, x] && LtQ[m, -1] && (IntegerQ[m] ||  ! 
ILtQ[n, -1])
 
Maple [F]

\[\int \frac {\left (d x +c \right )^{n} \left (b \,x^{2}+a \right )^{2}}{x^{5}}d x\]

Input:

int((d*x+c)^n*(b*x^2+a)^2/x^5,x)
 

Output:

int((d*x+c)^n*(b*x^2+a)^2/x^5,x)
 

Fricas [F]

\[ \int \frac {(c+d x)^n \left (a+b x^2\right )^2}{x^5} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{2} {\left (d x + c\right )}^{n}}{x^{5}} \,d x } \] Input:

integrate((d*x+c)^n*(b*x^2+a)^2/x^5,x, algorithm="fricas")
 

Output:

integral((b^2*x^4 + 2*a*b*x^2 + a^2)*(d*x + c)^n/x^5, x)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 6574 vs. \(2 (156) = 312\).

Time = 91.73 (sec) , antiderivative size = 6574, normalized size of antiderivative = 34.78 \[ \int \frac {(c+d x)^n \left (a+b x^2\right )^2}{x^5} \, dx=\text {Too large to display} \] Input:

integrate((d*x+c)**n*(b*x**2+a)**2/x**5,x)
 

Output:

3*a**2*c**4*d**(n + 5)*n**5*(c/d + x)**(n + 1)*lerchphi(1 + d*x/c, 1, n + 
1)*gamma(n + 1)/(-72*c**9*gamma(n + 2) - 96*c**8*d*x*gamma(n + 2) + 144*c* 
*7*d**2*(c/d + x)**2*gamma(n + 2) - 96*c**6*d**3*(c/d + x)**3*gamma(n + 2) 
 + 24*c**5*d**4*(c/d + x)**4*gamma(n + 2)) - 15*a**2*c**4*d**(n + 5)*n**4* 
(c/d + x)**(n + 1)*lerchphi(1 + d*x/c, 1, n + 1)*gamma(n + 1)/(-72*c**9*ga 
mma(n + 2) - 96*c**8*d*x*gamma(n + 2) + 144*c**7*d**2*(c/d + x)**2*gamma(n 
 + 2) - 96*c**6*d**3*(c/d + x)**3*gamma(n + 2) + 24*c**5*d**4*(c/d + x)**4 
*gamma(n + 2)) - 2*a**2*c**4*d**(n + 5)*n**4*(c/d + x)**(n + 1)*gamma(n + 
1)/(-72*c**9*gamma(n + 2) - 96*c**8*d*x*gamma(n + 2) + 144*c**7*d**2*(c/d 
+ x)**2*gamma(n + 2) - 96*c**6*d**3*(c/d + x)**3*gamma(n + 2) + 24*c**5*d* 
*4*(c/d + x)**4*gamma(n + 2)) + 15*a**2*c**4*d**(n + 5)*n**3*(c/d + x)**(n 
 + 1)*lerchphi(1 + d*x/c, 1, n + 1)*gamma(n + 1)/(-72*c**9*gamma(n + 2) - 
96*c**8*d*x*gamma(n + 2) + 144*c**7*d**2*(c/d + x)**2*gamma(n + 2) - 96*c* 
*6*d**3*(c/d + x)**3*gamma(n + 2) + 24*c**5*d**4*(c/d + x)**4*gamma(n + 2) 
) + 11*a**2*c**4*d**(n + 5)*n**3*(c/d + x)**(n + 1)*gamma(n + 1)/(-72*c**9 
*gamma(n + 2) - 96*c**8*d*x*gamma(n + 2) + 144*c**7*d**2*(c/d + x)**2*gamm 
a(n + 2) - 96*c**6*d**3*(c/d + x)**3*gamma(n + 2) + 24*c**5*d**4*(c/d + x) 
**4*gamma(n + 2)) + 15*a**2*c**4*d**(n + 5)*n**2*(c/d + x)**(n + 1)*lerchp 
hi(1 + d*x/c, 1, n + 1)*gamma(n + 1)/(-72*c**9*gamma(n + 2) - 96*c**8*d*x* 
gamma(n + 2) + 144*c**7*d**2*(c/d + x)**2*gamma(n + 2) - 96*c**6*d**3*(...
 

Maxima [F]

\[ \int \frac {(c+d x)^n \left (a+b x^2\right )^2}{x^5} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{2} {\left (d x + c\right )}^{n}}{x^{5}} \,d x } \] Input:

integrate((d*x+c)^n*(b*x^2+a)^2/x^5,x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^2*(d*x + c)^n/x^5, x)
 

Giac [F]

\[ \int \frac {(c+d x)^n \left (a+b x^2\right )^2}{x^5} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{2} {\left (d x + c\right )}^{n}}{x^{5}} \,d x } \] Input:

integrate((d*x+c)^n*(b*x^2+a)^2/x^5,x, algorithm="giac")
 

Output:

integrate((b*x^2 + a)^2*(d*x + c)^n/x^5, x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d x)^n \left (a+b x^2\right )^2}{x^5} \, dx=\int \frac {{\left (b\,x^2+a\right )}^2\,{\left (c+d\,x\right )}^n}{x^5} \,d x \] Input:

int(((a + b*x^2)^2*(c + d*x)^n)/x^5,x)
 

Output:

int(((a + b*x^2)^2*(c + d*x)^n)/x^5, x)
 

Reduce [F]

\[ \int \frac {(c+d x)^n \left (a+b x^2\right )^2}{x^5} \, dx=\frac {-6 \left (d x +c \right )^{n} a^{2} c^{3} n -2 \left (d x +c \right )^{n} a^{2} c^{2} d \,n^{2} x -\left (d x +c \right )^{n} a^{2} c \,d^{2} n^{3} x^{2}+3 \left (d x +c \right )^{n} a^{2} c \,d^{2} n^{2} x^{2}-\left (d x +c \right )^{n} a^{2} d^{3} n^{4} x^{3}+5 \left (d x +c \right )^{n} a^{2} d^{3} n^{3} x^{3}-6 \left (d x +c \right )^{n} a^{2} d^{3} n^{2} x^{3}-24 \left (d x +c \right )^{n} a b \,c^{3} n \,x^{2}-24 \left (d x +c \right )^{n} a b \,c^{2} d \,n^{2} x^{3}+24 \left (d x +c \right )^{n} b^{2} c^{3} x^{4}+\left (\int \frac {\left (d x +c \right )^{n}}{d \,x^{2}+c x}d x \right ) a^{2} d^{4} n^{5} x^{4}-6 \left (\int \frac {\left (d x +c \right )^{n}}{d \,x^{2}+c x}d x \right ) a^{2} d^{4} n^{4} x^{4}+11 \left (\int \frac {\left (d x +c \right )^{n}}{d \,x^{2}+c x}d x \right ) a^{2} d^{4} n^{3} x^{4}-6 \left (\int \frac {\left (d x +c \right )^{n}}{d \,x^{2}+c x}d x \right ) a^{2} d^{4} n^{2} x^{4}+24 \left (\int \frac {\left (d x +c \right )^{n}}{d \,x^{2}+c x}d x \right ) a b \,c^{2} d^{2} n^{3} x^{4}-24 \left (\int \frac {\left (d x +c \right )^{n}}{d \,x^{2}+c x}d x \right ) a b \,c^{2} d^{2} n^{2} x^{4}+24 \left (\int \frac {\left (d x +c \right )^{n}}{d \,x^{2}+c x}d x \right ) b^{2} c^{4} n \,x^{4}}{24 c^{3} n \,x^{4}} \] Input:

int((d*x+c)^n*(b*x^2+a)^2/x^5,x)
 

Output:

( - 6*(c + d*x)**n*a**2*c**3*n - 2*(c + d*x)**n*a**2*c**2*d*n**2*x - (c + 
d*x)**n*a**2*c*d**2*n**3*x**2 + 3*(c + d*x)**n*a**2*c*d**2*n**2*x**2 - (c 
+ d*x)**n*a**2*d**3*n**4*x**3 + 5*(c + d*x)**n*a**2*d**3*n**3*x**3 - 6*(c 
+ d*x)**n*a**2*d**3*n**2*x**3 - 24*(c + d*x)**n*a*b*c**3*n*x**2 - 24*(c + 
d*x)**n*a*b*c**2*d*n**2*x**3 + 24*(c + d*x)**n*b**2*c**3*x**4 + int((c + d 
*x)**n/(c*x + d*x**2),x)*a**2*d**4*n**5*x**4 - 6*int((c + d*x)**n/(c*x + d 
*x**2),x)*a**2*d**4*n**4*x**4 + 11*int((c + d*x)**n/(c*x + d*x**2),x)*a**2 
*d**4*n**3*x**4 - 6*int((c + d*x)**n/(c*x + d*x**2),x)*a**2*d**4*n**2*x**4 
 + 24*int((c + d*x)**n/(c*x + d*x**2),x)*a*b*c**2*d**2*n**3*x**4 - 24*int( 
(c + d*x)**n/(c*x + d*x**2),x)*a*b*c**2*d**2*n**2*x**4 + 24*int((c + d*x)* 
*n/(c*x + d*x**2),x)*b**2*c**4*n*x**4)/(24*c**3*n*x**4)