\(\int \frac {(c+d x)^n}{x^{5/2} (a+b x^2)^2} \, dx\) [254]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 478 \[ \int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx=-\frac {\left (7 b c^2+4 a d^2\right ) (c+d x)^{1+n}}{6 a^2 c \left (b c^2+a d^2\right ) x^{3/2}}+\frac {d \left (\frac {b (7-8 n)}{a}+\frac {4 d^2 (1-2 n)}{c^2}\right ) (c+d x)^{1+n}}{6 a \left (b c^2+a d^2\right ) \sqrt {x}}+\frac {b (c-d x) (c+d x)^{1+n}}{2 a \left (b c^2+a d^2\right ) x^{3/2} \left (a+b x^2\right )}-\frac {b \left (7 b c^2+a d^2 (7-2 n)+2 \sqrt {-a} \sqrt {b} c d n\right ) \sqrt {x} (c+d x)^n \left (1+\frac {d x}{c}\right )^{-n} \operatorname {AppellF1}\left (\frac {1}{2},-n,1,\frac {3}{2},-\frac {d x}{c},-\frac {\sqrt {b} x}{\sqrt {-a}}\right )}{4 a^3 \left (b c^2+a d^2\right )}-\frac {b \left (7 b c^2+a d^2 (7-2 n)-2 \sqrt {-a} \sqrt {b} c d n\right ) \sqrt {x} (c+d x)^n \left (1+\frac {d x}{c}\right )^{-n} \operatorname {AppellF1}\left (\frac {1}{2},-n,1,\frac {3}{2},-\frac {d x}{c},\frac {\sqrt {b} x}{\sqrt {-a}}\right )}{4 a^3 \left (b c^2+a d^2\right )}-\frac {d^2 \left (b c^2 (7-8 n)+4 a d^2 (1-2 n)\right ) (1+2 n) \sqrt {x} (c+d x)^n \left (\frac {c+d x}{c}\right )^{-n} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},-\frac {d x}{c}\right )}{6 a^2 c^2 \left (b c^2+a d^2\right )} \] Output:

-1/6*(4*a*d^2+7*b*c^2)*(d*x+c)^(1+n)/a^2/c/(a*d^2+b*c^2)/x^(3/2)+1/6*d*(b* 
(7-8*n)/a+4*d^2*(1-2*n)/c^2)*(d*x+c)^(1+n)/a/(a*d^2+b*c^2)/x^(1/2)+1/2*b*( 
-d*x+c)*(d*x+c)^(1+n)/a/(a*d^2+b*c^2)/x^(3/2)/(b*x^2+a)-1/4*b*(7*b*c^2+a*d 
^2*(7-2*n)+2*(-a)^(1/2)*b^(1/2)*c*d*n)*x^(1/2)*(d*x+c)^n*AppellF1(1/2,1,-n 
,3/2,-b^(1/2)*x/(-a)^(1/2),-d*x/c)/a^3/(a*d^2+b*c^2)/((1+d*x/c)^n)-1/4*b*( 
7*b*c^2+a*d^2*(7-2*n)-2*(-a)^(1/2)*b^(1/2)*c*d*n)*x^(1/2)*(d*x+c)^n*Appell 
F1(1/2,1,-n,3/2,b^(1/2)*x/(-a)^(1/2),-d*x/c)/a^3/(a*d^2+b*c^2)/((1+d*x/c)^ 
n)-1/6*d^2*(b*c^2*(7-8*n)+4*a*d^2*(1-2*n))*(1+2*n)*x^(1/2)*(d*x+c)^n*hyper 
geom([1/2, -n],[3/2],-d*x/c)/a^2/c^2/(a*d^2+b*c^2)/(((d*x+c)/c)^n)
 

Mathematica [F]

\[ \int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx \] Input:

Integrate[(c + d*x)^n/(x^(5/2)*(a + b*x^2)^2),x]
 

Output:

Integrate[(c + d*x)^n/(x^(5/2)*(a + b*x^2)^2), x]
 

Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 255, normalized size of antiderivative = 0.53, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {615, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx\)

\(\Big \downarrow \) 615

\(\displaystyle \int \left (-\frac {b (c+d x)^n}{2 a x^{5/2} \left (-a b-b^2 x^2\right )}-\frac {b (c+d x)^n}{4 a x^{5/2} \left (\sqrt {-a} \sqrt {b}-b x\right )^2}-\frac {b (c+d x)^n}{4 a x^{5/2} \left (\sqrt {-a} \sqrt {b}+b x\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {(c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} \operatorname {AppellF1}\left (-\frac {3}{2},1,-n,-\frac {1}{2},-\frac {\sqrt {b} x}{\sqrt {-a}},-\frac {d x}{c}\right )}{6 a^2 x^{3/2}}-\frac {(c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} \operatorname {AppellF1}\left (-\frac {3}{2},1,-n,-\frac {1}{2},\frac {\sqrt {b} x}{\sqrt {-a}},-\frac {d x}{c}\right )}{6 a^2 x^{3/2}}-\frac {(c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} \operatorname {AppellF1}\left (-\frac {3}{2},2,-n,-\frac {1}{2},-\frac {\sqrt {b} x}{\sqrt {-a}},-\frac {d x}{c}\right )}{6 a^2 x^{3/2}}-\frac {(c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} \operatorname {AppellF1}\left (-\frac {3}{2},2,-n,-\frac {1}{2},\frac {\sqrt {b} x}{\sqrt {-a}},-\frac {d x}{c}\right )}{6 a^2 x^{3/2}}\)

Input:

Int[(c + d*x)^n/(x^(5/2)*(a + b*x^2)^2),x]
 

Output:

-1/6*((c + d*x)^n*AppellF1[-3/2, 1, -n, -1/2, -((Sqrt[b]*x)/Sqrt[-a]), -(( 
d*x)/c)])/(a^2*x^(3/2)*(1 + (d*x)/c)^n) - ((c + d*x)^n*AppellF1[-3/2, 1, - 
n, -1/2, (Sqrt[b]*x)/Sqrt[-a], -((d*x)/c)])/(6*a^2*x^(3/2)*(1 + (d*x)/c)^n 
) - ((c + d*x)^n*AppellF1[-3/2, 2, -n, -1/2, -((Sqrt[b]*x)/Sqrt[-a]), -((d 
*x)/c)])/(6*a^2*x^(3/2)*(1 + (d*x)/c)^n) - ((c + d*x)^n*AppellF1[-3/2, 2, 
-n, -1/2, (Sqrt[b]*x)/Sqrt[-a], -((d*x)/c)])/(6*a^2*x^(3/2)*(1 + (d*x)/c)^ 
n)
 

Defintions of rubi rules used

rule 615
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
 x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] 
 /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [F]

\[\int \frac {\left (d x +c \right )^{n}}{x^{\frac {5}{2}} \left (b \,x^{2}+a \right )^{2}}d x\]

Input:

int((d*x+c)^n/x^(5/2)/(b*x^2+a)^2,x)
 

Output:

int((d*x+c)^n/x^(5/2)/(b*x^2+a)^2,x)
 

Fricas [F]

\[ \int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\int { \frac {{\left (d x + c\right )}^{n}}{{\left (b x^{2} + a\right )}^{2} x^{\frac {5}{2}}} \,d x } \] Input:

integrate((d*x+c)^n/x^(5/2)/(b*x^2+a)^2,x, algorithm="fricas")
 

Output:

integral((d*x + c)^n*sqrt(x)/(b^2*x^7 + 2*a*b*x^5 + a^2*x^3), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\text {Timed out} \] Input:

integrate((d*x+c)**n/x**(5/2)/(b*x**2+a)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\int { \frac {{\left (d x + c\right )}^{n}}{{\left (b x^{2} + a\right )}^{2} x^{\frac {5}{2}}} \,d x } \] Input:

integrate((d*x+c)^n/x^(5/2)/(b*x^2+a)^2,x, algorithm="maxima")
 

Output:

integrate((d*x + c)^n/((b*x^2 + a)^2*x^(5/2)), x)
 

Giac [F]

\[ \int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\int { \frac {{\left (d x + c\right )}^{n}}{{\left (b x^{2} + a\right )}^{2} x^{\frac {5}{2}}} \,d x } \] Input:

integrate((d*x+c)^n/x^(5/2)/(b*x^2+a)^2,x, algorithm="giac")
 

Output:

integrate((d*x + c)^n/((b*x^2 + a)^2*x^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\int \frac {{\left (c+d\,x\right )}^n}{x^{5/2}\,{\left (b\,x^2+a\right )}^2} \,d x \] Input:

int((c + d*x)^n/(x^(5/2)*(a + b*x^2)^2),x)
 

Output:

int((c + d*x)^n/(x^(5/2)*(a + b*x^2)^2), x)
 

Reduce [F]

\[ \int \frac {(c+d x)^n}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\int \frac {\left (d x +c \right )^{n}}{\sqrt {x}\, a^{2} x^{2}+2 \sqrt {x}\, a b \,x^{4}+\sqrt {x}\, b^{2} x^{6}}d x \] Input:

int((d*x+c)^n/x^(5/2)/(b*x^2+a)^2,x)
 

Output:

int((c + d*x)**n/(sqrt(x)*a**2*x**2 + 2*sqrt(x)*a*b*x**4 + sqrt(x)*b**2*x* 
*6),x)