\(\int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx\) [270]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 147 \[ \int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx=\frac {(c+d x)^{1+n} \sqrt {1-\frac {c+d x}{c-\frac {\sqrt {a} d}{\sqrt {b}}}} \sqrt {1-\frac {c+d x}{c+\frac {\sqrt {a} d}{\sqrt {b}}}} \operatorname {AppellF1}\left (1+n,\frac {1}{2},\frac {1}{2},2+n,\frac {c+d x}{c-\frac {\sqrt {a} d}{\sqrt {b}}},\frac {c+d x}{c+\frac {\sqrt {a} d}{\sqrt {b}}}\right )}{d (1+n) \sqrt {a-b x^2}} \] Output:

(d*x+c)^(1+n)*(1-(d*x+c)/(c-a^(1/2)*d/b^(1/2)))^(1/2)*(1-(d*x+c)/(c+a^(1/2 
)*d/b^(1/2)))^(1/2)*AppellF1(1+n,1/2,1/2,2+n,(d*x+c)/(c-a^(1/2)*d/b^(1/2)) 
,(d*x+c)/(c+a^(1/2)*d/b^(1/2)))/d/(1+n)/(-b*x^2+a)^(1/2)
 

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.05 \[ \int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx=\frac {\sqrt {\frac {d \left (\sqrt {\frac {a}{b}}-x\right )}{c+\sqrt {\frac {a}{b}} d}} \sqrt {\frac {d \left (\sqrt {\frac {a}{b}}+x\right )}{-c+\sqrt {\frac {a}{b}} d}} (c+d x)^{1+n} \operatorname {AppellF1}\left (1+n,\frac {1}{2},\frac {1}{2},2+n,\frac {c+d x}{c-\sqrt {\frac {a}{b}} d},\frac {c+d x}{c+\sqrt {\frac {a}{b}} d}\right )}{d (1+n) \sqrt {a-b x^2}} \] Input:

Integrate[(c + d*x)^n/Sqrt[a - b*x^2],x]
 

Output:

(Sqrt[(d*(Sqrt[a/b] - x))/(c + Sqrt[a/b]*d)]*Sqrt[(d*(Sqrt[a/b] + x))/(-c 
+ Sqrt[a/b]*d)]*(c + d*x)^(1 + n)*AppellF1[1 + n, 1/2, 1/2, 2 + n, (c + d* 
x)/(c - Sqrt[a/b]*d), (c + d*x)/(c + Sqrt[a/b]*d)])/(d*(1 + n)*Sqrt[a - b* 
x^2])
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {514, 150}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx\)

\(\Big \downarrow \) 514

\(\displaystyle \frac {\sqrt {1-\frac {c+d x}{c-\frac {\sqrt {a} d}{\sqrt {b}}}} \sqrt {1-\frac {c+d x}{\frac {\sqrt {a} d}{\sqrt {b}}+c}} \int \frac {(c+d x)^n}{\sqrt {1-\frac {c+d x}{c-\frac {\sqrt {a} d}{\sqrt {b}}}} \sqrt {1-\frac {c+d x}{c+\frac {\sqrt {a} d}{\sqrt {b}}}}}d(c+d x)}{d \sqrt {a-b x^2}}\)

\(\Big \downarrow \) 150

\(\displaystyle \frac {(c+d x)^{n+1} \sqrt {1-\frac {c+d x}{c-\frac {\sqrt {a} d}{\sqrt {b}}}} \sqrt {1-\frac {c+d x}{\frac {\sqrt {a} d}{\sqrt {b}}+c}} \operatorname {AppellF1}\left (n+1,\frac {1}{2},\frac {1}{2},n+2,\frac {c+d x}{c-\frac {\sqrt {a} d}{\sqrt {b}}},\frac {c+d x}{c+\frac {\sqrt {a} d}{\sqrt {b}}}\right )}{d (n+1) \sqrt {a-b x^2}}\)

Input:

Int[(c + d*x)^n/Sqrt[a - b*x^2],x]
 

Output:

((c + d*x)^(1 + n)*Sqrt[1 - (c + d*x)/(c - (Sqrt[a]*d)/Sqrt[b])]*Sqrt[1 - 
(c + d*x)/(c + (Sqrt[a]*d)/Sqrt[b])]*AppellF1[1 + n, 1/2, 1/2, 2 + n, (c + 
 d*x)/(c - (Sqrt[a]*d)/Sqrt[b]), (c + d*x)/(c + (Sqrt[a]*d)/Sqrt[b])])/(d* 
(1 + n)*Sqrt[a - b*x^2])
 

Defintions of rubi rules used

rule 150
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^n*e^p*((b*x)^(m + 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2 
, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] &&  !In 
tegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])
 

rule 514
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[ 
{q = Rt[-a/b, 2]}, Simp[(a + b*x^2)^p/(d*(1 - (c + d*x)/(c - d*q))^p*(1 - ( 
c + d*x)/(c + d*q))^p)   Subst[Int[x^n*Simp[1 - x/(c + d*q), x]^p*Simp[1 - 
x/(c - d*q), x]^p, x], x, c + d*x], x]] /; FreeQ[{a, b, c, d, n, p}, x] && 
NeQ[b*c^2 + a*d^2, 0]
 
Maple [F]

\[\int \frac {\left (d x +c \right )^{n}}{\sqrt {-b \,x^{2}+a}}d x\]

Input:

int((d*x+c)^n/(-b*x^2+a)^(1/2),x)
 

Output:

int((d*x+c)^n/(-b*x^2+a)^(1/2),x)
 

Fricas [F]

\[ \int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx=\int { \frac {{\left (d x + c\right )}^{n}}{\sqrt {-b x^{2} + a}} \,d x } \] Input:

integrate((d*x+c)^n/(-b*x^2+a)^(1/2),x, algorithm="fricas")
 

Output:

integral(-sqrt(-b*x^2 + a)*(d*x + c)^n/(b*x^2 - a), x)
 

Sympy [F]

\[ \int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx=\int \frac {\left (c + d x\right )^{n}}{\sqrt {a - b x^{2}}}\, dx \] Input:

integrate((d*x+c)**n/(-b*x**2+a)**(1/2),x)
 

Output:

Integral((c + d*x)**n/sqrt(a - b*x**2), x)
 

Maxima [F]

\[ \int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx=\int { \frac {{\left (d x + c\right )}^{n}}{\sqrt {-b x^{2} + a}} \,d x } \] Input:

integrate((d*x+c)^n/(-b*x^2+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate((d*x + c)^n/sqrt(-b*x^2 + a), x)
 

Giac [F]

\[ \int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx=\int { \frac {{\left (d x + c\right )}^{n}}{\sqrt {-b x^{2} + a}} \,d x } \] Input:

integrate((d*x+c)^n/(-b*x^2+a)^(1/2),x, algorithm="giac")
 

Output:

integrate((d*x + c)^n/sqrt(-b*x^2 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx=\int \frac {{\left (c+d\,x\right )}^n}{\sqrt {a-b\,x^2}} \,d x \] Input:

int((c + d*x)^n/(a - b*x^2)^(1/2),x)
 

Output:

int((c + d*x)^n/(a - b*x^2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {(c+d x)^n}{\sqrt {a-b x^2}} \, dx=\int \frac {\left (d x +c \right )^{n}}{\sqrt {-b \,x^{2}+a}}d x \] Input:

int((d*x+c)^n/(-b*x^2+a)^(1/2),x)
 

Output:

int((c + d*x)**n/sqrt(a - b*x**2),x)