\(\int \frac {(e x)^{-1-2 p} (a+b x^2)^p}{(c+d x)^2} \, dx\) [315]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 301 \[ \int \frac {(e x)^{-1-2 p} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx=-\frac {(e x)^{-2 p} \left (a+b x^2\right )^{1+p}}{2 a e p \left (c^2-d^2 x^2\right )}-\frac {2 d (e x)^{1-2 p} \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2} (1-2 p),-p,2,\frac {1}{2} (3-2 p),-\frac {b x^2}{a},\frac {d^2 x^2}{c^2}\right )}{c^3 e^2 (1-2 p)}+\frac {a d^2 (e x)^{2-2 p} \left (a+b x^2\right )^{-1+p} \operatorname {Hypergeometric2F1}\left (2,1-p,2-p,\frac {\left (b+\frac {a d^2}{c^2}\right ) x^2}{a+b x^2}\right )}{2 c^4 e^3 (1-p)}+\frac {\left (b c^2+a d^2 (1+p)\right ) (e x)^{2-2 p} \left (a+b x^2\right )^{-1+p} \operatorname {Hypergeometric2F1}\left (2,1-p,2-p,\frac {\left (b+\frac {a d^2}{c^2}\right ) x^2}{a+b x^2}\right )}{2 c^4 e^3 (1-p) p} \] Output:

-1/2*(b*x^2+a)^(p+1)/a/e/p/((e*x)^(2*p))/(-d^2*x^2+c^2)-2*d*(e*x)^(1-2*p)* 
(b*x^2+a)^p*AppellF1(1/2-p,2,-p,3/2-p,d^2*x^2/c^2,-b*x^2/a)/c^3/e^2/(1-2*p 
)/((1+b*x^2/a)^p)+1/2*a*d^2*(e*x)^(2-2*p)*(b*x^2+a)^(-1+p)*hypergeom([2, 1 
-p],[2-p],(b+a*d^2/c^2)*x^2/(b*x^2+a))/c^4/e^3/(1-p)+1/2*(b*c^2+a*d^2*(p+1 
))*(e*x)^(2-2*p)*(b*x^2+a)^(-1+p)*hypergeom([2, 1-p],[2-p],(b+a*d^2/c^2)*x 
^2/(b*x^2+a))/c^4/e^3/(1-p)/p
 

Mathematica [F]

\[ \int \frac {(e x)^{-1-2 p} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx=\int \frac {(e x)^{-1-2 p} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx \] Input:

Integrate[((e*x)^(-1 - 2*p)*(a + b*x^2)^p)/(c + d*x)^2,x]
 

Output:

Integrate[((e*x)^(-1 - 2*p)*(a + b*x^2)^p)/(c + d*x)^2, x]
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 294, normalized size of antiderivative = 0.98, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {623, 622, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e x)^{-2 p-1} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx\)

\(\Big \downarrow \) 623

\(\displaystyle x^{2 p+1} (e x)^{-2 p-1} \int \frac {x^{-2 p-1} \left (b x^2+a\right )^p}{(c+d x)^2}dx\)

\(\Big \downarrow \) 622

\(\displaystyle x^{2 p+1} (e x)^{-2 p-1} \int \left (\frac {c^2 \left (b x^2+a\right )^p x^{-2 p-1}}{\left (c^2-d^2 x^2\right )^2}+\frac {d^2 \left (b x^2+a\right )^p x^{1-2 p}}{\left (d^2 x^2-c^2\right )^2}-\frac {2 c d \left (b x^2+a\right )^p x^{-2 p}}{\left (c^2-d^2 x^2\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle x^{2 p+1} (e x)^{-2 p-1} \left (-\frac {2 d x^{1-2 p} \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2}-p,-p,2,\frac {3}{2}-p,-\frac {b x^2}{a},\frac {d^2 x^2}{c^2}\right )}{c^3 (1-2 p)}-\frac {x^{-2 p} \left (a+b x^2\right )^{p+1}}{2 a p \left (c^2-d^2 x^2\right )}+\frac {x^{2-2 p} \left (a+b x^2\right )^{p-1} \left (a d^2 (p+1)+b c^2\right ) \operatorname {Hypergeometric2F1}\left (2,1-p,2-p,\frac {\left (\frac {a d^2}{c^2}+b\right ) x^2}{b x^2+a}\right )}{2 c^4 (1-p) p}+\frac {a d^2 x^{2-2 p} \left (a+b x^2\right )^{p-1} \operatorname {Hypergeometric2F1}\left (2,1-p,2-p,\frac {\left (\frac {a d^2}{c^2}+b\right ) x^2}{b x^2+a}\right )}{2 c^4 (1-p)}\right )\)

Input:

Int[((e*x)^(-1 - 2*p)*(a + b*x^2)^p)/(c + d*x)^2,x]
 

Output:

x^(1 + 2*p)*(e*x)^(-1 - 2*p)*(-1/2*(a + b*x^2)^(1 + p)/(a*p*x^(2*p)*(c^2 - 
 d^2*x^2)) - (2*d*x^(1 - 2*p)*(a + b*x^2)^p*AppellF1[1/2 - p, -p, 2, 3/2 - 
 p, -((b*x^2)/a), (d^2*x^2)/c^2])/(c^3*(1 - 2*p)*(1 + (b*x^2)/a)^p) + (a*d 
^2*x^(2 - 2*p)*(a + b*x^2)^(-1 + p)*Hypergeometric2F1[2, 1 - p, 2 - p, ((b 
 + (a*d^2)/c^2)*x^2)/(a + b*x^2)])/(2*c^4*(1 - p)) + ((b*c^2 + a*d^2*(1 + 
p))*x^(2 - 2*p)*(a + b*x^2)^(-1 + p)*Hypergeometric2F1[2, 1 - p, 2 - p, (( 
b + (a*d^2)/c^2)*x^2)/(a + b*x^2)])/(2*c^4*(1 - p)*p))
 

Defintions of rubi rules used

rule 622
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> Int[ExpandIntegrand[x^m*(a + b*x^2)^p, (c/(c^2 - d^2*x^2) - d*(x/(c^2 
 - d^2*x^2)))^(-n), x], x] /; FreeQ[{a, b, c, d, m, p}, x] && ILtQ[n, -1]
 

rule 623
Int[((e_)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
x_Symbol] :> Simp[(e*x)^m/x^m   Int[x^m*(c + d*x)^n*(a + b*x^2)^p, x], x] / 
; FreeQ[{a, b, c, d, e, m, p}, x] && ILtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [F]

\[\int \frac {\left (e x \right )^{-1-2 p} \left (b \,x^{2}+a \right )^{p}}{\left (d x +c \right )^{2}}d x\]

Input:

int((e*x)^(-1-2*p)*(b*x^2+a)^p/(d*x+c)^2,x)
 

Output:

int((e*x)^(-1-2*p)*(b*x^2+a)^p/(d*x+c)^2,x)
 

Fricas [F]

\[ \int \frac {(e x)^{-1-2 p} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 1}}{{\left (d x + c\right )}^{2}} \,d x } \] Input:

integrate((e*x)^(-1-2*p)*(b*x^2+a)^p/(d*x+c)^2,x, algorithm="fricas")
 

Output:

integral((b*x^2 + a)^p*(e*x)^(-2*p - 1)/(d^2*x^2 + 2*c*d*x + c^2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(e x)^{-1-2 p} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx=\text {Timed out} \] Input:

integrate((e*x)**(-1-2*p)*(b*x**2+a)**p/(d*x+c)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(e x)^{-1-2 p} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 1}}{{\left (d x + c\right )}^{2}} \,d x } \] Input:

integrate((e*x)^(-1-2*p)*(b*x^2+a)^p/(d*x+c)^2,x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^p*(e*x)^(-2*p - 1)/(d*x + c)^2, x)
 

Giac [F]

\[ \int \frac {(e x)^{-1-2 p} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 1}}{{\left (d x + c\right )}^{2}} \,d x } \] Input:

integrate((e*x)^(-1-2*p)*(b*x^2+a)^p/(d*x+c)^2,x, algorithm="giac")
 

Output:

integrate((b*x^2 + a)^p*(e*x)^(-2*p - 1)/(d*x + c)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^{-1-2 p} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx=\int \frac {{\left (b\,x^2+a\right )}^p}{{\left (e\,x\right )}^{2\,p+1}\,{\left (c+d\,x\right )}^2} \,d x \] Input:

int((a + b*x^2)^p/((e*x)^(2*p + 1)*(c + d*x)^2),x)
 

Output:

int((a + b*x^2)^p/((e*x)^(2*p + 1)*(c + d*x)^2), x)
 

Reduce [F]

\[ \int \frac {(e x)^{-1-2 p} \left (a+b x^2\right )^p}{(c+d x)^2} \, dx=\frac {-\left (b \,x^{2}+a \right )^{p} b +2 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} a \,c^{2} x +2 x^{2 p} a c d \,x^{2}+x^{2 p} a \,d^{2} x^{3}+x^{2 p} b \,c^{2} x^{3}+2 x^{2 p} b c d \,x^{4}+x^{2 p} b \,d^{2} x^{5}}d x \right ) a^{2} d^{2} p -2 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} a \,c^{2} x +2 x^{2 p} a c d \,x^{2}+x^{2 p} a \,d^{2} x^{3}+x^{2 p} b \,c^{2} x^{3}+2 x^{2 p} b c d \,x^{4}+x^{2 p} b \,d^{2} x^{5}}d x \right ) a b \,c^{2} p -4 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} a \,c^{2}+2 x^{2 p} a c d x +x^{2 p} a \,d^{2} x^{2}+x^{2 p} b \,c^{2} x^{2}+2 x^{2 p} b c d \,x^{3}+x^{2 p} b \,d^{2} x^{4}}d x \right ) a b c d p}{2 x^{2 p} e^{2 p} a \,d^{2} e p} \] Input:

int((e*x)^(-1-2*p)*(b*x^2+a)^p/(d*x+c)^2,x)
 

Output:

( - (a + b*x**2)**p*b + 2*x**(2*p)*int((a + b*x**2)**p/(x**(2*p)*a*c**2*x 
+ 2*x**(2*p)*a*c*d*x**2 + x**(2*p)*a*d**2*x**3 + x**(2*p)*b*c**2*x**3 + 2* 
x**(2*p)*b*c*d*x**4 + x**(2*p)*b*d**2*x**5),x)*a**2*d**2*p - 2*x**(2*p)*in 
t((a + b*x**2)**p/(x**(2*p)*a*c**2*x + 2*x**(2*p)*a*c*d*x**2 + x**(2*p)*a* 
d**2*x**3 + x**(2*p)*b*c**2*x**3 + 2*x**(2*p)*b*c*d*x**4 + x**(2*p)*b*d**2 
*x**5),x)*a*b*c**2*p - 4*x**(2*p)*int((a + b*x**2)**p/(x**(2*p)*a*c**2 + 2 
*x**(2*p)*a*c*d*x + x**(2*p)*a*d**2*x**2 + x**(2*p)*b*c**2*x**2 + 2*x**(2* 
p)*b*c*d*x**3 + x**(2*p)*b*d**2*x**4),x)*a*b*c*d*p)/(2*x**(2*p)*e**(2*p)*a 
*d**2*e*p)