\(\int (e x)^{-2-2 p} (c+d x)^2 (a+b x^2)^p \, dx\) [319]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 186 \[ \int (e x)^{-2-2 p} (c+d x)^2 \left (a+b x^2\right )^p \, dx=\frac {d^2 (e x)^{-1-2 p} \left (a+b x^2\right )^{1+p}}{b e}-\frac {\left (b c^2+a d^2 (1+2 p)\right ) (e x)^{-1-2 p} \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (-1-2 p),-p,\frac {1}{2} (1-2 p),-\frac {b x^2}{a}\right )}{b e (1+2 p)}-\frac {c d (e x)^{-2 p} \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,-\frac {b x^2}{a}\right )}{e^2 p} \] Output:

d^2*(e*x)^(-1-2*p)*(b*x^2+a)^(p+1)/b/e-(b*c^2+a*d^2*(1+2*p))*(e*x)^(-1-2*p 
)*(b*x^2+a)^p*hypergeom([-p, -1/2-p],[1/2-p],-b*x^2/a)/b/e/(1+2*p)/((1+b*x 
^2/a)^p)-c*d*(b*x^2+a)^p*hypergeom([-p, -p],[1-p],-b*x^2/a)/e^2/p/((e*x)^( 
2*p))/((1+b*x^2/a)^p)
 

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.82 \[ \int (e x)^{-2-2 p} (c+d x)^2 \left (a+b x^2\right )^p \, dx=-\frac {x (e x)^{-2 (1+p)} \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \left (c^2 p (-1+2 p) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2}-p,-p,\frac {1}{2}-p,-\frac {b x^2}{a}\right )+d (1+2 p) x \left (d p x \operatorname {Hypergeometric2F1}\left (\frac {1}{2}-p,-p,\frac {3}{2}-p,-\frac {b x^2}{a}\right )+c (-1+2 p) \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,-\frac {b x^2}{a}\right )\right )\right )}{p \left (-1+4 p^2\right )} \] Input:

Integrate[(e*x)^(-2 - 2*p)*(c + d*x)^2*(a + b*x^2)^p,x]
 

Output:

-((x*(a + b*x^2)^p*(c^2*p*(-1 + 2*p)*Hypergeometric2F1[-1/2 - p, -p, 1/2 - 
 p, -((b*x^2)/a)] + d*(1 + 2*p)*x*(d*p*x*Hypergeometric2F1[1/2 - p, -p, 3/ 
2 - p, -((b*x^2)/a)] + c*(-1 + 2*p)*Hypergeometric2F1[-p, -p, 1 - p, -((b* 
x^2)/a)])))/(p*(-1 + 4*p^2)*(e*x)^(2*(1 + p))*(1 + (b*x^2)/a)^p))
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.02, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {559, 557, 279, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c+d x)^2 (e x)^{-2 p-2} \left (a+b x^2\right )^p \, dx\)

\(\Big \downarrow \) 559

\(\displaystyle \frac {\int (e x)^{-2 (p+1)} \left (b c^2+2 b d x c+a d^2 (2 p+1)\right ) \left (b x^2+a\right )^pdx}{b}+\frac {d^2 (e x)^{-2 p-1} \left (a+b x^2\right )^{p+1}}{b e}\)

\(\Big \downarrow \) 557

\(\displaystyle \frac {\left (a d^2 (2 p+1)+b c^2\right ) \int (e x)^{-2 (p+1)} \left (b x^2+a\right )^pdx+\frac {2 b c d \int (e x)^{-2 p-1} \left (b x^2+a\right )^pdx}{e}}{b}+\frac {d^2 (e x)^{-2 p-1} \left (a+b x^2\right )^{p+1}}{b e}\)

\(\Big \downarrow \) 279

\(\displaystyle \frac {\left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (a d^2 (2 p+1)+b c^2\right ) \int (e x)^{-2 (p+1)} \left (\frac {b x^2}{a}+1\right )^pdx+\frac {2 b c d \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \int (e x)^{-2 p-1} \left (\frac {b x^2}{a}+1\right )^pdx}{e}}{b}+\frac {d^2 (e x)^{-2 p-1} \left (a+b x^2\right )^{p+1}}{b e}\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {-\frac {(e x)^{-2 p-1} \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (a d^2 (2 p+1)+b c^2\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (-2 p-1),-p,\frac {1}{2} (1-2 p),-\frac {b x^2}{a}\right )}{e (2 p+1)}-\frac {b c d (e x)^{-2 p} \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,-\frac {b x^2}{a}\right )}{e^2 p}}{b}+\frac {d^2 (e x)^{-2 p-1} \left (a+b x^2\right )^{p+1}}{b e}\)

Input:

Int[(e*x)^(-2 - 2*p)*(c + d*x)^2*(a + b*x^2)^p,x]
 

Output:

(d^2*(e*x)^(-1 - 2*p)*(a + b*x^2)^(1 + p))/(b*e) + (-(((b*c^2 + a*d^2*(1 + 
 2*p))*(e*x)^(-1 - 2*p)*(a + b*x^2)^p*Hypergeometric2F1[(-1 - 2*p)/2, -p, 
(1 - 2*p)/2, -((b*x^2)/a)])/(e*(1 + 2*p)*(1 + (b*x^2)/a)^p)) - (b*c*d*(a + 
 b*x^2)^p*Hypergeometric2F1[-p, -p, 1 - p, -((b*x^2)/a)])/(e^2*p*(e*x)^(2* 
p)*(1 + (b*x^2)/a)^p))/b
 

Defintions of rubi rules used

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 279
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntP 
art[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[(c*x)^m* 
(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && 
!(ILtQ[p, 0] || GtQ[a, 0])
 

rule 557
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[c   Int[(e*x)^m*(a + b*x^2)^p, x], x] + Simp[d/e   Int[(e*x)^( 
m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x]
 

rule 559
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
x_Symbol] :> Simp[d^n*(e*x)^(m + n - 1)*((a + b*x^2)^(p + 1)/(b*e^(n - 1)*( 
m + n + 2*p + 1))), x] + Simp[1/(b*(m + n + 2*p + 1))   Int[(e*x)^m*(a + b* 
x^2)^p*ExpandToSum[b*(m + n + 2*p + 1)*(c + d*x)^n - b*d^n*(m + n + 2*p + 1 
)*x^n - a*d^n*(m + n - 1)*x^(n - 2), x], x], x] /; FreeQ[{a, b, c, d, e, m, 
 p}, x] && IGtQ[n, 1] &&  !IntegerQ[m] && NeQ[m + n + 2*p + 1, 0]
 
Maple [F]

\[\int \left (e x \right )^{-2 p -2} \left (d x +c \right )^{2} \left (b \,x^{2}+a \right )^{p}d x\]

Input:

int((e*x)^(-2*p-2)*(d*x+c)^2*(b*x^2+a)^p,x)
 

Output:

int((e*x)^(-2*p-2)*(d*x+c)^2*(b*x^2+a)^p,x)
 

Fricas [F]

\[ \int (e x)^{-2-2 p} (c+d x)^2 \left (a+b x^2\right )^p \, dx=\int { {\left (d x + c\right )}^{2} {\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 2} \,d x } \] Input:

integrate((e*x)^(-2-2*p)*(d*x+c)^2*(b*x^2+a)^p,x, algorithm="fricas")
 

Output:

integral((d^2*x^2 + 2*c*d*x + c^2)*(b*x^2 + a)^p*(e*x)^(-2*p - 2), x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 44.38 (sec) , antiderivative size = 172, normalized size of antiderivative = 0.92 \[ \int (e x)^{-2-2 p} (c+d x)^2 \left (a+b x^2\right )^p \, dx=\frac {a^{p} c^{2} e^{- 2 p - 2} x^{- 2 p - 1} \Gamma \left (- p - \frac {1}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, - p - \frac {1}{2} \\ \frac {1}{2} - p \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \Gamma \left (\frac {1}{2} - p\right )} + \frac {a^{p} c d e^{- 2 p - 2} x^{- 2 p} \Gamma \left (- p\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, - p \\ 1 - p \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{\Gamma \left (1 - p\right )} + \frac {a^{p} d^{2} e^{- 2 p - 2} x^{1 - 2 p} \Gamma \left (\frac {1}{2} - p\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, \frac {1}{2} - p \\ \frac {3}{2} - p \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \Gamma \left (\frac {3}{2} - p\right )} \] Input:

integrate((e*x)**(-2-2*p)*(d*x+c)**2*(b*x**2+a)**p,x)
 

Output:

a**p*c**2*e**(-2*p - 2)*x**(-2*p - 1)*gamma(-p - 1/2)*hyper((-p, -p - 1/2) 
, (1/2 - p,), b*x**2*exp_polar(I*pi)/a)/(2*gamma(1/2 - p)) + a**p*c*d*e**( 
-2*p - 2)*gamma(-p)*hyper((-p, -p), (1 - p,), b*x**2*exp_polar(I*pi)/a)/(x 
**(2*p)*gamma(1 - p)) + a**p*d**2*e**(-2*p - 2)*x**(1 - 2*p)*gamma(1/2 - p 
)*hyper((-p, 1/2 - p), (3/2 - p,), b*x**2*exp_polar(I*pi)/a)/(2*gamma(3/2 
- p))
 

Maxima [F]

\[ \int (e x)^{-2-2 p} (c+d x)^2 \left (a+b x^2\right )^p \, dx=\int { {\left (d x + c\right )}^{2} {\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 2} \,d x } \] Input:

integrate((e*x)^(-2-2*p)*(d*x+c)^2*(b*x^2+a)^p,x, algorithm="maxima")
 

Output:

integrate((d*x + c)^2*(b*x^2 + a)^p*(e*x)^(-2*p - 2), x)
 

Giac [F]

\[ \int (e x)^{-2-2 p} (c+d x)^2 \left (a+b x^2\right )^p \, dx=\int { {\left (d x + c\right )}^{2} {\left (b x^{2} + a\right )}^{p} \left (e x\right )^{-2 \, p - 2} \,d x } \] Input:

integrate((e*x)^(-2-2*p)*(d*x+c)^2*(b*x^2+a)^p,x, algorithm="giac")
 

Output:

integrate((d*x + c)^2*(b*x^2 + a)^p*(e*x)^(-2*p - 2), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int (e x)^{-2-2 p} (c+d x)^2 \left (a+b x^2\right )^p \, dx=\int \frac {{\left (b\,x^2+a\right )}^p\,{\left (c+d\,x\right )}^2}{{\left (e\,x\right )}^{2\,p+2}} \,d x \] Input:

int(((a + b*x^2)^p*(c + d*x)^2)/(e*x)^(2*p + 2),x)
 

Output:

int(((a + b*x^2)^p*(c + d*x)^2)/(e*x)^(2*p + 2), x)
 

Reduce [F]

\[ \int (e x)^{-2-2 p} (c+d x)^2 \left (a+b x^2\right )^p \, dx=\frac {-\left (b \,x^{2}+a \right )^{p} c^{2}+\left (b \,x^{2}+a \right )^{p} d^{2} x^{2}-2 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} a \,x^{2}+x^{2 p} b \,x^{4}}d x \right ) a \,c^{2} p x +2 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} a +x^{2 p} b \,x^{2}}d x \right ) a \,d^{2} p x +2 x^{2 p} \left (\int \frac {\left (b \,x^{2}+a \right )^{p}}{x^{2 p} x}d x \right ) c d x}{x^{2 p} e^{2 p} e^{2} x} \] Input:

int((e*x)^(-2-2*p)*(d*x+c)^2*(b*x^2+a)^p,x)
 

Output:

( - (a + b*x**2)**p*c**2 + (a + b*x**2)**p*d**2*x**2 - 2*x**(2*p)*int((a + 
 b*x**2)**p/(x**(2*p)*a*x**2 + x**(2*p)*b*x**4),x)*a*c**2*p*x + 2*x**(2*p) 
*int((a + b*x**2)**p/(x**(2*p)*a + x**(2*p)*b*x**2),x)*a*d**2*p*x + 2*x**( 
2*p)*int((a + b*x**2)**p/(x**(2*p)*x),x)*c*d*x)/(x**(2*p)*e**(2*p)*e**2*x)