\(\int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx\) [167]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 88 \[ \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx=-\frac {\left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 c x^2}+\frac {b d \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+\frac {b}{c+d x^2}}}{\sqrt {b+a c}}\right )}{2 c^{3/2} \sqrt {b+a c}} \] Output:

-1/2*(d*x^2+c)*(a+b/(d*x^2+c))^(1/2)/c/x^2+1/2*b*d*arctanh(c^(1/2)*(a+b/(d 
*x^2+c))^(1/2)/(a*c+b)^(1/2))/c^(3/2)/(a*c+b)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.25 \[ \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx=-\frac {\left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{2 c x^2}-\frac {b d \arctan \left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {-b-a c}}\right )}{2 c^{3/2} \sqrt {-b-a c}} \] Input:

Integrate[Sqrt[a + b/(c + d*x^2)]/x^3,x]
 

Output:

-1/2*((c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(c*x^2) - (b*d*Ar 
cTan[(Sqrt[c]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/Sqrt[-b - a*c]])/(2*c 
^(3/2)*Sqrt[-b - a*c])
 

Rubi [A] (warning: unable to verify)

Time = 0.55 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.24, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2057, 2053, 2052, 252, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx\)

\(\Big \downarrow \) 2057

\(\displaystyle \int \frac {\sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{x^3}dx\)

\(\Big \downarrow \) 2053

\(\displaystyle \frac {1}{2} \int \frac {\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}}{x^4}dx^2\)

\(\Big \downarrow \) 2052

\(\displaystyle -b d \int \frac {x^4}{\left (-c x^4+b+a c\right )^2}d\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}\)

\(\Big \downarrow \) 252

\(\displaystyle -b d \left (\frac {\sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{2 c \left (a c+b-c x^4\right )}-\frac {\int \frac {1}{-c x^4+b+a c}d\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}}{2 c}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle -b d \left (\frac {\sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{2 c \left (a c+b-c x^4\right )}-\frac {\text {arctanh}\left (\frac {\sqrt {c} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a c+b}}\right )}{2 c^{3/2} \sqrt {a c+b}}\right )\)

Input:

Int[Sqrt[a + b/(c + d*x^2)]/x^3,x]
 

Output:

-(b*d*(Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/(2*c*(b + a*c - c*x^4)) - Arc 
Tanh[(Sqrt[c]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/Sqrt[b + a*c]]/(2*c^( 
3/2)*Sqrt[b + a*c])))
 

Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 2052
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_S 
ymbol] :> With[{q = Denominator[p]}, Simp[q*e*(b*c - a*d)   Subst[Int[x^(q* 
(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a + b* 
x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] 
&& IntegerQ[m]
 

rule 2053
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.) 
))^(p_), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(e*( 
(a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p}, 
 x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 2057
Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u* 
((b + a*c + a*d*x^n)/(c + d*x^n))^p, x] /; FreeQ[{a, b, c, d, n, p}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(188\) vs. \(2(72)=144\).

Time = 0.14 (sec) , antiderivative size = 189, normalized size of antiderivative = 2.15

method result size
risch \(-\frac {\left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{2 c \,x^{2}}+\frac {d b \ln \left (\frac {2 a \,c^{2}+2 b c +\left (2 a c d +b d \right ) x^{2}+2 \sqrt {a \,c^{2}+b c}\, \sqrt {a \,c^{2}+b c +\left (2 a c d +b d \right ) x^{2}+a \,d^{2} x^{4}}}{x^{2}}\right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{4 c \sqrt {a \,c^{2}+b c}\, \left (a d \,x^{2}+a c +b \right )}\) \(189\)
default \(-\frac {\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (-2 a \,d^{2} \sqrt {a \,d^{2} x^{4}+2 a d \,x^{2} c +b d \,x^{2}+a \,c^{2}+b c}\, x^{4} \sqrt {a \,c^{2}+b c}-\ln \left (\frac {2 a d \,x^{2} c +b d \,x^{2}+2 a \,c^{2}+2 \sqrt {a \,c^{2}+b c}\, \sqrt {a \,d^{2} x^{4}+2 a d \,x^{2} c +b d \,x^{2}+a \,c^{2}+b c}+2 b c}{x^{2}}\right ) a b \,c^{2} d \,x^{2}-4 \sqrt {a \,d^{2} x^{4}+2 a d \,x^{2} c +b d \,x^{2}+a \,c^{2}+b c}\, a c d \,x^{2} \sqrt {a \,c^{2}+b c}-\ln \left (\frac {2 a d \,x^{2} c +b d \,x^{2}+2 a \,c^{2}+2 \sqrt {a \,c^{2}+b c}\, \sqrt {a \,d^{2} x^{4}+2 a d \,x^{2} c +b d \,x^{2}+a \,c^{2}+b c}+2 b c}{x^{2}}\right ) b^{2} c d \,x^{2}-2 \sqrt {a \,d^{2} x^{4}+2 a d \,x^{2} c +b d \,x^{2}+a \,c^{2}+b c}\, b d \,x^{2} \sqrt {a \,c^{2}+b c}+2 \left (a \,d^{2} x^{4}+2 a d \,x^{2} c +b d \,x^{2}+a \,c^{2}+b c \right )^{\frac {3}{2}} \sqrt {a \,c^{2}+b c}\right )}{4 \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, c^{2} \left (a c +b \right ) x^{2} \sqrt {a \,c^{2}+b c}}\) \(454\)

Input:

int((a+b/(d*x^2+c))^(1/2)/x^3,x,method=_RETURNVERBOSE)
 

Output:

-1/2/c*(d*x^2+c)/x^2*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)+1/4/c*d*b/(a*c^2+b* 
c)^(1/2)*ln((2*a*c^2+2*b*c+(2*a*c*d+b*d)*x^2+2*(a*c^2+b*c)^(1/2)*(a*c^2+b* 
c+(2*a*c*d+b*d)*x^2+a*d^2*x^4)^(1/2))/x^2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/ 
2)*((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)/(a*d*x^2+a*c+b)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 188 vs. \(2 (72) = 144\).

Time = 0.12 (sec) , antiderivative size = 433, normalized size of antiderivative = 4.92 \[ \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx=\left [\frac {\sqrt {a c^{2} + b c} b d x^{2} \log \left (\frac {{\left (8 \, a^{2} c^{2} + 8 \, a b c + b^{2}\right )} d^{2} x^{4} + 8 \, a^{2} c^{4} + 16 \, a b c^{3} + 8 \, b^{2} c^{2} + 8 \, {\left (2 \, a^{2} c^{3} + 3 \, a b c^{2} + b^{2} c\right )} d x^{2} + 4 \, {\left ({\left (2 \, a c + b\right )} d^{2} x^{4} + 2 \, a c^{3} + {\left (4 \, a c^{2} + 3 \, b c\right )} d x^{2} + 2 \, b c^{2}\right )} \sqrt {a c^{2} + b c} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{x^{4}}\right ) - 4 \, {\left (a c^{3} + {\left (a c^{2} + b c\right )} d x^{2} + b c^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{8 \, {\left (a c^{3} + b c^{2}\right )} x^{2}}, -\frac {\sqrt {-a c^{2} - b c} b d x^{2} \arctan \left (\frac {{\left ({\left (2 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + 2 \, b c\right )} \sqrt {-a c^{2} - b c} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} c^{3} + 2 \, a b c^{2} + {\left (a^{2} c^{2} + a b c\right )} d x^{2} + b^{2} c\right )}}\right ) + 2 \, {\left (a c^{3} + {\left (a c^{2} + b c\right )} d x^{2} + b c^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{4 \, {\left (a c^{3} + b c^{2}\right )} x^{2}}\right ] \] Input:

integrate((a+b/(d*x^2+c))^(1/2)/x^3,x, algorithm="fricas")
 

Output:

[1/8*(sqrt(a*c^2 + b*c)*b*d*x^2*log(((8*a^2*c^2 + 8*a*b*c + b^2)*d^2*x^4 + 
 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^2 + 8*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d* 
x^2 + 4*((2*a*c + b)*d^2*x^4 + 2*a*c^3 + (4*a*c^2 + 3*b*c)*d*x^2 + 2*b*c^2 
)*sqrt(a*c^2 + b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/x^4) - 4*(a*c^3 
 + (a*c^2 + b*c)*d*x^2 + b*c^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/((a 
*c^3 + b*c^2)*x^2), -1/4*(sqrt(-a*c^2 - b*c)*b*d*x^2*arctan(1/2*((2*a*c + 
b)*d*x^2 + 2*a*c^2 + 2*b*c)*sqrt(-a*c^2 - b*c)*sqrt((a*d*x^2 + a*c + b)/(d 
*x^2 + c))/(a^2*c^3 + 2*a*b*c^2 + (a^2*c^2 + a*b*c)*d*x^2 + b^2*c)) + 2*(a 
*c^3 + (a*c^2 + b*c)*d*x^2 + b*c^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))) 
/((a*c^3 + b*c^2)*x^2)]
 

Sympy [F]

\[ \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx=\int \frac {\sqrt {\frac {a c + a d x^{2} + b}{c + d x^{2}}}}{x^{3}}\, dx \] Input:

integrate((a+b/(d*x**2+c))**(1/2)/x**3,x)
 

Output:

Integral(sqrt((a*c + a*d*x**2 + b)/(c + d*x**2))/x**3, x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 156 vs. \(2 (72) = 144\).

Time = 0.13 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.77 \[ \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx=-\frac {b d \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a c^{2} + b c - \frac {{\left (a d x^{2} + a c + b\right )} c^{2}}{d x^{2} + c}\right )}} - \frac {b d \log \left (\frac {c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} - \sqrt {{\left (a c + b\right )} c}}{c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} + \sqrt {{\left (a c + b\right )} c}}\right )}{4 \, \sqrt {{\left (a c + b\right )} c} c} \] Input:

integrate((a+b/(d*x^2+c))^(1/2)/x^3,x, algorithm="maxima")
 

Output:

-1/2*b*d*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a*c^2 + b*c - (a*d*x^2 + a 
*c + b)*c^2/(d*x^2 + c)) - 1/4*b*d*log((c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 
+ c)) - sqrt((a*c + b)*c))/(c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) + sqrt 
((a*c + b)*c)))/(sqrt((a*c + b)*c)*c)
                                                                                    
                                                                                    
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 281 vs. \(2 (72) = 144\).

Time = 0.18 (sec) , antiderivative size = 281, normalized size of antiderivative = 3.19 \[ \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx=-\frac {1}{2} \, {\left (\frac {b d \arctan \left (-\frac {\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}}{\sqrt {-a c^{2} - b c}}\right )}{\sqrt {-a c^{2} - b c} c} + \frac {2 \, a^{\frac {3}{2}} c^{2} {\left | d \right |} + 2 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} a c d + 2 \, \sqrt {a} b c {\left | d \right |} + {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} b d}{{\left (a c^{2} - {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )}^{2} + b c\right )} c}\right )} \mathrm {sgn}\left (d x^{2} + c\right ) \] Input:

integrate((a+b/(d*x^2+c))^(1/2)/x^3,x, algorithm="giac")
 

Output:

-1/2*(b*d*arctan(-(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^ 
2 + a*c^2 + b*c))/sqrt(-a*c^2 - b*c))/(sqrt(-a*c^2 - b*c)*c) + (2*a^(3/2)* 
c^2*abs(d) + 2*(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + 
 a*c^2 + b*c))*a*c*d + 2*sqrt(a)*b*c*abs(d) + (sqrt(a*d^2)*x^2 - sqrt(a*d^ 
2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))*b*d)/((a*c^2 - (sqrt(a*d^2)* 
x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))^2 + b*c)*c))* 
sgn(d*x^2 + c)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx=\int \frac {\sqrt {a+\frac {b}{d\,x^2+c}}}{x^3} \,d x \] Input:

int((a + b/(c + d*x^2))^(1/2)/x^3,x)
 

Output:

int((a + b/(c + d*x^2))^(1/2)/x^3, x)
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.64 \[ \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx=\frac {-\sqrt {d \,x^{2}+c}\, \sqrt {a d \,x^{2}+a c +b}\, a \,c^{2}-\sqrt {d \,x^{2}+c}\, \sqrt {a d \,x^{2}+a c +b}\, b c +\sqrt {c}\, \sqrt {a c +b}\, \mathrm {log}\left (\sqrt {a c +b}\, \sqrt {a d \,x^{2}+a c +b}\, c +\sqrt {c}\, \sqrt {d \,x^{2}+c}\, a c +\sqrt {c}\, \sqrt {d \,x^{2}+c}\, b \right ) b d \,x^{2}-\sqrt {c}\, \sqrt {a c +b}\, \mathrm {log}\left (x \right ) b d \,x^{2}}{2 c^{2} x^{2} \left (a c +b \right )} \] Input:

int((a+b/(d*x^2+c))^(1/2)/x^3,x)
 

Output:

( - sqrt(c + d*x**2)*sqrt(a*c + a*d*x**2 + b)*a*c**2 - sqrt(c + d*x**2)*sq 
rt(a*c + a*d*x**2 + b)*b*c + sqrt(c)*sqrt(a*c + b)*log(sqrt(a*c + b)*sqrt( 
a*c + a*d*x**2 + b)*c + sqrt(c)*sqrt(c + d*x**2)*a*c + sqrt(c)*sqrt(c + d* 
x**2)*b)*b*d*x**2 - sqrt(c)*sqrt(a*c + b)*log(x)*b*d*x**2)/(2*c**2*x**2*(a 
*c + b))