\(\int \frac {(a+b \sqrt {c+d x^n})^p}{e x} \, dx\) [372]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F(-2)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 159 \[ \int \frac {\left (a+b \sqrt {c+d x^n}\right )^p}{e x} \, dx=-\frac {\left (a+b \sqrt {c+d x^n}\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {a+b \sqrt {c+d x^n}}{a-b \sqrt {c}}\right )}{\left (a-b \sqrt {c}\right ) e n (1+p)}-\frac {\left (a+b \sqrt {c+d x^n}\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {a+b \sqrt {c+d x^n}}{a+b \sqrt {c}}\right )}{\left (a+b \sqrt {c}\right ) e n (1+p)} \] Output:

-(a+b*(c+d*x^n)^(1/2))^(p+1)*hypergeom([1, p+1],[2+p],(a+b*(c+d*x^n)^(1/2) 
)/(a-b*c^(1/2)))/(a-b*c^(1/2))/e/n/(p+1)-(a+b*(c+d*x^n)^(1/2))^(p+1)*hyper 
geom([1, p+1],[2+p],(a+b*(c+d*x^n)^(1/2))/(a+b*c^(1/2)))/(a+b*c^(1/2))/e/n 
/(p+1)
 

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.93 \[ \int \frac {\left (a+b \sqrt {c+d x^n}\right )^p}{e x} \, dx=-\frac {\left (a+b \sqrt {c+d x^n}\right )^{1+p} \left (\left (a+b \sqrt {c}\right ) \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {a+b \sqrt {c+d x^n}}{a-b \sqrt {c}}\right )+\left (a-b \sqrt {c}\right ) \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {a+b \sqrt {c+d x^n}}{a+b \sqrt {c}}\right )\right )}{\left (a-b \sqrt {c}\right ) \left (a+b \sqrt {c}\right ) e n (1+p)} \] Input:

Integrate[(a + b*Sqrt[c + d*x^n])^p/(e*x),x]
 

Output:

-(((a + b*Sqrt[c + d*x^n])^(1 + p)*((a + b*Sqrt[c])*Hypergeometric2F1[1, 1 
 + p, 2 + p, (a + b*Sqrt[c + d*x^n])/(a - b*Sqrt[c])] + (a - b*Sqrt[c])*Hy 
pergeometric2F1[1, 1 + p, 2 + p, (a + b*Sqrt[c + d*x^n])/(a + b*Sqrt[c])]) 
)/((a - b*Sqrt[c])*(a + b*Sqrt[c])*e*n*(1 + p)))
 

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {27, 7282, 896, 25, 1732, 615, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b \sqrt {c+d x^n}\right )^p}{e x} \, dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\left (a+b \sqrt {d x^n+c}\right )^p}{x}dx}{e}\)

\(\Big \downarrow \) 7282

\(\displaystyle \frac {\int x^{-n} \left (a+b \sqrt {d x^n+c}\right )^pdx^n}{e n}\)

\(\Big \downarrow \) 896

\(\displaystyle \frac {\int \frac {x^{-n} \left (a+b \sqrt {d x^n+c}\right )^p}{d}d\left (d x^n+c\right )}{e n}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int -\frac {x^{-n} \left (a+b \sqrt {d x^n+c}\right )^p}{d}d\left (d x^n+c\right )}{e n}\)

\(\Big \downarrow \) 1732

\(\displaystyle -\frac {2 \int \frac {\sqrt {d x^n+c} \left (a+b \sqrt {d x^n+c}\right )^p}{c-x^{2 n}}d\sqrt {d x^n+c}}{e n}\)

\(\Big \downarrow \) 615

\(\displaystyle -\frac {2 \int \left (\frac {\left (a+b \sqrt {d x^n+c}\right )^p}{2 \left (-d x^n-c+\sqrt {c}\right )}-\frac {\left (a+b \sqrt {d x^n+c}\right )^p}{2 \left (\sqrt {c}+\sqrt {d x^n+c}\right )}\right )d\sqrt {d x^n+c}}{e n}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \left (\frac {\left (a+b \sqrt {c+d x^n}\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {a+b \sqrt {d x^n+c}}{a-b \sqrt {c}}\right )}{2 (p+1) \left (a-b \sqrt {c}\right )}+\frac {\left (a+b \sqrt {c+d x^n}\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {a+b \sqrt {d x^n+c}}{a+b \sqrt {c}}\right )}{2 (p+1) \left (a+b \sqrt {c}\right )}\right )}{e n}\)

Input:

Int[(a + b*Sqrt[c + d*x^n])^p/(e*x),x]
 

Output:

(-2*(((a + b*Sqrt[c + d*x^n])^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, ( 
a + b*Sqrt[c + d*x^n])/(a - b*Sqrt[c])])/(2*(a - b*Sqrt[c])*(1 + p)) + ((a 
 + b*Sqrt[c + d*x^n])^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, (a + b*Sq 
rt[c + d*x^n])/(a + b*Sqrt[c])])/(2*(a + b*Sqrt[c])*(1 + p))))/(e*n)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 615
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
 x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] 
 /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, 0]
 

rule 896
Int[((a_) + (b_.)*(v_)^(n_))^(p_.)*(x_)^(m_.), x_Symbol] :> With[{c = Coeff 
icient[v, x, 0], d = Coefficient[v, x, 1]}, Simp[1/d^(m + 1)   Subst[Int[Si 
mplifyIntegrand[(x - c)^m*(a + b*x^n)^p, x], x], x, v], x] /; NeQ[c, 0]] /; 
 FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && IntegerQ[m]
 

rule 1732
Int[((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symb 
ol] :> With[{g = Denominator[n]}, Simp[g   Subst[Int[x^(g - 1)*(d + e*x^(g* 
n))^q*(a + c*x^(2*g*n))^p, x], x, x^(1/g)], x]] /; FreeQ[{a, c, d, e, p, q} 
, x] && EqQ[n2, 2*n] && FractionQ[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7282
Int[(u_)/(x_), x_Symbol] :> With[{lst = PowerVariableExpn[u, 0, x]}, Simp[1 
/lst[[2]]   Subst[Int[NormalizeIntegrand[Simplify[lst[[1]]/x], x], x], x, ( 
lst[[3]]*x)^lst[[2]]], x] /;  !FalseQ[lst] && NeQ[lst[[2]], 0]] /; NonsumQ[ 
u] &&  !RationalFunctionQ[u, x]
 
Maple [F]

\[\int \frac {\left (a +b \sqrt {c +d \,x^{n}}\right )^{p}}{e x}d x\]

Input:

int((a+b*(c+d*x^n)^(1/2))^p/e/x,x)
 

Output:

int((a+b*(c+d*x^n)^(1/2))^p/e/x,x)
 

Fricas [F(-2)]

Exception generated. \[ \int \frac {\left (a+b \sqrt {c+d x^n}\right )^p}{e x} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*(c+d*x^n)^(1/2))^p/e/x,x, algorithm="fricas")
 

Output:

Exception raised: TypeError >>  Error detected within library code:   do_a 
lg_rde: unimplemented kernel
 

Sympy [F]

\[ \int \frac {\left (a+b \sqrt {c+d x^n}\right )^p}{e x} \, dx=\frac {\int \frac {\left (a + b \sqrt {c + d x^{n}}\right )^{p}}{x}\, dx}{e} \] Input:

integrate((a+b*(c+d*x**n)**(1/2))**p/e/x,x)
 

Output:

Integral((a + b*sqrt(c + d*x**n))**p/x, x)/e
 

Maxima [F]

\[ \int \frac {\left (a+b \sqrt {c+d x^n}\right )^p}{e x} \, dx=\int { \frac {{\left (\sqrt {d x^{n} + c} b + a\right )}^{p}}{e x} \,d x } \] Input:

integrate((a+b*(c+d*x^n)^(1/2))^p/e/x,x, algorithm="maxima")
 

Output:

integrate((sqrt(d*x^n + c)*b + a)^p/x, x)/e
 

Giac [F]

\[ \int \frac {\left (a+b \sqrt {c+d x^n}\right )^p}{e x} \, dx=\int { \frac {{\left (\sqrt {d x^{n} + c} b + a\right )}^{p}}{e x} \,d x } \] Input:

integrate((a+b*(c+d*x^n)^(1/2))^p/e/x,x, algorithm="giac")
 

Output:

integrate((sqrt(d*x^n + c)*b + a)^p/(e*x), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b \sqrt {c+d x^n}\right )^p}{e x} \, dx=\int \frac {{\left (a+b\,\sqrt {c+d\,x^n}\right )}^p}{e\,x} \,d x \] Input:

int((a + b*(c + d*x^n)^(1/2))^p/(e*x),x)
 

Output:

int((a + b*(c + d*x^n)^(1/2))^p/(e*x), x)
 

Reduce [F]

\[ \int \frac {\left (a+b \sqrt {c+d x^n}\right )^p}{e x} \, dx=\frac {\int \frac {\left (\sqrt {x^{n} d +c}\, b +a \right )^{p}}{x}d x}{e} \] Input:

int((a+b*(c+d*x^n)^(1/2))^p/e/x,x)
 

Output:

int((sqrt(x**n*d + c)*b + a)**p/x,x)/e