\(\int (e x)^{-1+3 n} (a+b (c+d x^n)^q)^p \, dx\) [381]

Optimal result
Mathematica [F]
Rubi [F]
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 294 \[ \int (e x)^{-1+3 n} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx=\frac {c^2 x^{-3 n} (e x)^{3 n} \left (c+d x^n\right ) \left (a+b \left (c+d x^n\right )^q\right )^p \left (1+\frac {b \left (c+d x^n\right )^q}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,\frac {1}{q},1+\frac {1}{q},-\frac {b \left (c+d x^n\right )^q}{a}\right )}{d^3 e n}-\frac {c x^{-3 n} (e x)^{3 n} \left (c+d x^n\right )^2 \left (a+b \left (c+d x^n\right )^q\right )^p \left (1+\frac {b \left (c+d x^n\right )^q}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,\frac {2}{q},\frac {2+q}{q},-\frac {b \left (c+d x^n\right )^q}{a}\right )}{d^3 e n}+\frac {x^{-3 n} (e x)^{3 n} \left (c+d x^n\right )^3 \left (a+b \left (c+d x^n\right )^q\right )^p \left (1+\frac {b \left (c+d x^n\right )^q}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,\frac {3}{q},\frac {3+q}{q},-\frac {b \left (c+d x^n\right )^q}{a}\right )}{3 d^3 e n} \] Output:

c^2*(e*x)^(3*n)*(c+d*x^n)*(a+b*(c+d*x^n)^q)^p*hypergeom([-p, 1/q],[1+1/q], 
-b*(c+d*x^n)^q/a)/d^3/e/n/(x^(3*n))/((1+b*(c+d*x^n)^q/a)^p)-c*(e*x)^(3*n)* 
(c+d*x^n)^2*(a+b*(c+d*x^n)^q)^p*hypergeom([-p, 2/q],[(2+q)/q],-b*(c+d*x^n) 
^q/a)/d^3/e/n/(x^(3*n))/((1+b*(c+d*x^n)^q/a)^p)+1/3*(e*x)^(3*n)*(c+d*x^n)^ 
3*(a+b*(c+d*x^n)^q)^p*hypergeom([-p, 3/q],[(3+q)/q],-b*(c+d*x^n)^q/a)/d^3/ 
e/n/(x^(3*n))/((1+b*(c+d*x^n)^q/a)^p)
 

Mathematica [F]

\[ \int (e x)^{-1+3 n} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx=\int (e x)^{-1+3 n} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx \] Input:

Integrate[(e*x)^(-1 + 3*n)*(a + b*(c + d*x^n)^q)^p,x]
 

Output:

Integrate[(e*x)^(-1 + 3*n)*(a + b*(c + d*x^n)^q)^p, x]
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (e x)^{3 n-1} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx\)

\(\Big \downarrow \) 7299

\(\displaystyle \int (e x)^{3 n-1} \left (a+b \left (c+d x^n\right )^q\right )^pdx\)

Input:

Int[(e*x)^(-1 + 3*n)*(a + b*(c + d*x^n)^q)^p,x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
Maple [F]

\[\int \left (e x \right )^{-1+3 n} {\left (a +b \left (c +d \,x^{n}\right )^{q}\right )}^{p}d x\]

Input:

int((e*x)^(-1+3*n)*(a+b*(c+d*x^n)^q)^p,x)
 

Output:

int((e*x)^(-1+3*n)*(a+b*(c+d*x^n)^q)^p,x)
 

Fricas [F]

\[ \int (e x)^{-1+3 n} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx=\int { {\left ({\left (d x^{n} + c\right )}^{q} b + a\right )}^{p} \left (e x\right )^{3 \, n - 1} \,d x } \] Input:

integrate((e*x)^(-1+3*n)*(a+b*(c+d*x^n)^q)^p,x, algorithm="fricas")
 

Output:

integral(((d*x^n + c)^q*b + a)^p*(e*x)^(3*n - 1), x)
 

Sympy [F(-1)]

Timed out. \[ \int (e x)^{-1+3 n} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx=\text {Timed out} \] Input:

integrate((e*x)**(-1+3*n)*(a+b*(c+d*x**n)**q)**p,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (e x)^{-1+3 n} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx=\int { {\left ({\left (d x^{n} + c\right )}^{q} b + a\right )}^{p} \left (e x\right )^{3 \, n - 1} \,d x } \] Input:

integrate((e*x)^(-1+3*n)*(a+b*(c+d*x^n)^q)^p,x, algorithm="maxima")
 

Output:

integrate(((d*x^n + c)^q*b + a)^p*(e*x)^(3*n - 1), x)
 

Giac [F]

\[ \int (e x)^{-1+3 n} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx=\int { {\left ({\left (d x^{n} + c\right )}^{q} b + a\right )}^{p} \left (e x\right )^{3 \, n - 1} \,d x } \] Input:

integrate((e*x)^(-1+3*n)*(a+b*(c+d*x^n)^q)^p,x, algorithm="giac")
 

Output:

integrate(((d*x^n + c)^q*b + a)^p*(e*x)^(3*n - 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int (e x)^{-1+3 n} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx=\int {\left (a+b\,{\left (c+d\,x^n\right )}^q\right )}^p\,{\left (e\,x\right )}^{3\,n-1} \,d x \] Input:

int((a + b*(c + d*x^n)^q)^p*(e*x)^(3*n - 1),x)
 

Output:

int((a + b*(c + d*x^n)^q)^p*(e*x)^(3*n - 1), x)
 

Reduce [F]

\[ \int (e x)^{-1+3 n} \left (a+b \left (c+d x^n\right )^q\right )^p \, dx=\text {too large to display} \] Input:

int((e*x)^(-1+3*n)*(a+b*(c+d*x^n)^q)^p,x)
 

Output:

(e**(3*n)*(x**(3*n)*((x**n*d + c)**q*b + a)**p*d**3*p**2*q**2 + 3*x**(3*n) 
*((x**n*d + c)**q*b + a)**p*d**3*p*q + 2*x**(3*n)*((x**n*d + c)**q*b + a)* 
*p*d**3 + x**(2*n)*((x**n*d + c)**q*b + a)**p*c*d**2*p**2*q**2 + x**(2*n)* 
((x**n*d + c)**q*b + a)**p*c*d**2*p*q - 2*x**n*((x**n*d + c)**q*b + a)**p* 
c**2*d*p*q + 2*((x**n*d + c)**q*b + a)**p*c**3 + int((x**(3*n)*((x**n*d + 
c)**q*b + a)**p)/((x**n*d + c)**q*b*p**3*q**3*x + 6*(x**n*d + c)**q*b*p**2 
*q**2*x + 11*(x**n*d + c)**q*b*p*q*x + 6*(x**n*d + c)**q*b*x + a*p**3*q**3 
*x + 6*a*p**2*q**2*x + 11*a*p*q*x + 6*a*x),x)*a*d**3*n*p**6*q**6 + 9*int(( 
x**(3*n)*((x**n*d + c)**q*b + a)**p)/((x**n*d + c)**q*b*p**3*q**3*x + 6*(x 
**n*d + c)**q*b*p**2*q**2*x + 11*(x**n*d + c)**q*b*p*q*x + 6*(x**n*d + c)* 
*q*b*x + a*p**3*q**3*x + 6*a*p**2*q**2*x + 11*a*p*q*x + 6*a*x),x)*a*d**3*n 
*p**5*q**5 + 31*int((x**(3*n)*((x**n*d + c)**q*b + a)**p)/((x**n*d + c)**q 
*b*p**3*q**3*x + 6*(x**n*d + c)**q*b*p**2*q**2*x + 11*(x**n*d + c)**q*b*p* 
q*x + 6*(x**n*d + c)**q*b*x + a*p**3*q**3*x + 6*a*p**2*q**2*x + 11*a*p*q*x 
 + 6*a*x),x)*a*d**3*n*p**4*q**4 + 51*int((x**(3*n)*((x**n*d + c)**q*b + a) 
**p)/((x**n*d + c)**q*b*p**3*q**3*x + 6*(x**n*d + c)**q*b*p**2*q**2*x + 11 
*(x**n*d + c)**q*b*p*q*x + 6*(x**n*d + c)**q*b*x + a*p**3*q**3*x + 6*a*p** 
2*q**2*x + 11*a*p*q*x + 6*a*x),x)*a*d**3*n*p**3*q**3 + 40*int((x**(3*n)*(( 
x**n*d + c)**q*b + a)**p)/((x**n*d + c)**q*b*p**3*q**3*x + 6*(x**n*d + c)* 
*q*b*p**2*q**2*x + 11*(x**n*d + c)**q*b*p*q*x + 6*(x**n*d + c)**q*b*x +...