\(\int \sqrt {1-\frac {1}{1+2 x}} \, dx\) [30]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 37 \[ \int \sqrt {1-\frac {1}{1+2 x}} \, dx=\frac {\sqrt {x} \sqrt {1+2 x}}{\sqrt {2}}-\frac {1}{2} \text {arcsinh}\left (\sqrt {2} \sqrt {x}\right ) \] Output:

1/2*x^(1/2)*(1+2*x)^(1/2)*2^(1/2)-1/2*arcsinh(2^(1/2)*x^(1/2))
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.95 \[ \int \sqrt {1-\frac {1}{1+2 x}} \, dx=\frac {\sqrt {\frac {x}{1+2 x}} \left (\sqrt {2} \sqrt {x} (1+2 x)+\sqrt {1+2 x} \log \left (-\sqrt {2} \sqrt {x}+\sqrt {1+2 x}\right )\right )}{2 \sqrt {x}} \] Input:

Integrate[Sqrt[1 - (1 + 2*x)^(-1)],x]
 

Output:

(Sqrt[x/(1 + 2*x)]*(Sqrt[2]*Sqrt[x]*(1 + 2*x) + Sqrt[1 + 2*x]*Log[-(Sqrt[2 
]*Sqrt[x]) + Sqrt[1 + 2*x]]))/(2*Sqrt[x])
 

Rubi [A] (warning: unable to verify)

Time = 0.28 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.05, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {239, 773, 51, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {1-\frac {1}{2 x+1}} \, dx\)

\(\Big \downarrow \) 239

\(\displaystyle \frac {1}{2} \int \sqrt {1-\frac {1}{2 x+1}}d(2 x+1)\)

\(\Big \downarrow \) 773

\(\displaystyle -\frac {1}{2} \int \sqrt {2} \sqrt {-x} (2 x+1)^2d\frac {1}{2 x+1}\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \int \frac {2 x+1}{\sqrt {2} \sqrt {-x}}d\frac {1}{2 x+1}+\sqrt {2} \sqrt {-x} (2 x+1)\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left (\sqrt {2} \sqrt {-x} (2 x+1)-\int \frac {1}{1-\frac {1}{(2 x+1)^2}}d\left (\sqrt {2} \sqrt {-x}\right )\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\sqrt {2} \sqrt {-x} (2 x+1)-\text {arctanh}\left (\sqrt {2} \sqrt {-x}\right )\right )\)

Input:

Int[Sqrt[1 - (1 + 2*x)^(-1)],x]
 

Output:

(Sqrt[2]*Sqrt[-x]*(1 + 2*x) - ArcTanh[Sqrt[2]*Sqrt[-x]])/2
 

Defintions of rubi rules used

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 239
Int[((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Simp[1/Coefficient[v, x, 1 
]   Subst[Int[(a + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, n, p}, x] && Lin 
earQ[v, x] && NeQ[v, x]
 

rule 773
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^ 
2, x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] &&  !IntegerQ[p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(63\) vs. \(2(26)=52\).

Time = 0.09 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.73

method result size
trager \(3 \left (\frac {1}{6}+\frac {x}{3}\right ) \sqrt {2}\, \sqrt {\frac {x}{1+2 x}}-\frac {\ln \left (4 x \sqrt {2}\, \sqrt {\frac {x}{1+2 x}}+2 \sqrt {2}\, \sqrt {\frac {x}{1+2 x}}+4 x +1\right )}{4}\) \(64\)
default \(\frac {\sqrt {2}\, \sqrt {\frac {x}{1+2 x}}\, \left (1+2 x \right ) \left (-\ln \left (\frac {\sqrt {2}}{4}+x \sqrt {2}+\sqrt {2 x^{2}+x}\right ) \sqrt {2}+4 \sqrt {2 x^{2}+x}\right )}{8 \sqrt {x \left (1+2 x \right )}}\) \(69\)
risch \(\frac {\left (1+2 x \right ) \sqrt {2}\, \sqrt {\frac {x}{1+2 x}}}{2}-\frac {\ln \left (\frac {\left (\frac {1}{2}+2 x \right ) \sqrt {2}}{2}+\sqrt {2 x^{2}+x}\right ) \sqrt {\frac {x}{1+2 x}}\, \sqrt {x \left (1+2 x \right )}}{4 x}\) \(69\)

Input:

int((1-1/(1+2*x))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

3*(1/6+1/3*x)*2^(1/2)*(x/(1+2*x))^(1/2)-1/4*ln(4*x*2^(1/2)*(x/(1+2*x))^(1/ 
2)+2*2^(1/2)*(x/(1+2*x))^(1/2)+4*x+1)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 62 vs. \(2 (26) = 52\).

Time = 0.07 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.68 \[ \int \sqrt {1-\frac {1}{1+2 x}} \, dx=\frac {1}{2} \, \sqrt {2} {\left (2 \, x + 1\right )} \sqrt {\frac {x}{2 \, x + 1}} - \frac {1}{4} \, \log \left (\sqrt {2} \sqrt {\frac {x}{2 \, x + 1}} + 1\right ) + \frac {1}{4} \, \log \left (\sqrt {2} \sqrt {\frac {x}{2 \, x + 1}} - 1\right ) \] Input:

integrate((1-1/(1+2*x))^(1/2),x, algorithm="fricas")
 

Output:

1/2*sqrt(2)*(2*x + 1)*sqrt(x/(2*x + 1)) - 1/4*log(sqrt(2)*sqrt(x/(2*x + 1) 
) + 1) + 1/4*log(sqrt(2)*sqrt(x/(2*x + 1)) - 1)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.83 (sec) , antiderivative size = 90, normalized size of antiderivative = 2.43 \[ \int \sqrt {1-\frac {1}{1+2 x}} \, dx=\begin {cases} \sqrt {x} \sqrt {x + \frac {1}{2}} - \frac {\operatorname {acosh}{\left (\sqrt {2} \sqrt {x + \frac {1}{2}} \right )}}{2} & \text {for}\: \left |{x + \frac {1}{2}}\right | > \frac {1}{2} \\\frac {i \operatorname {asin}{\left (\sqrt {2} \sqrt {x + \frac {1}{2}} \right )}}{2} - \frac {i \left (x + \frac {1}{2}\right )^{\frac {3}{2}}}{\sqrt {- x}} + \frac {i \sqrt {x + \frac {1}{2}}}{2 \sqrt {- x}} & \text {otherwise} \end {cases} \] Input:

integrate((1-1/(1+2*x))**(1/2),x)
 

Output:

Piecewise((sqrt(x)*sqrt(x + 1/2) - acosh(sqrt(2)*sqrt(x + 1/2))/2, Abs(x + 
 1/2) > 1/2), (I*asin(sqrt(2)*sqrt(x + 1/2))/2 - I*(x + 1/2)**(3/2)/sqrt(- 
x) + I*sqrt(x + 1/2)/(2*sqrt(-x)), True))
 

Maxima [F]

\[ \int \sqrt {1-\frac {1}{1+2 x}} \, dx=\int { \sqrt {-\frac {1}{2 \, x + 1} + 1} \,d x } \] Input:

integrate((1-1/(1+2*x))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(-1/(2*x + 1) + 1), x)
                                                                                    
                                                                                    
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 59 vs. \(2 (26) = 52\).

Time = 0.14 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.59 \[ \int \sqrt {1-\frac {1}{1+2 x}} \, dx=\frac {1}{8} \, \sqrt {2} {\left (\sqrt {2} \log \left ({\left | -2 \, \sqrt {2} {\left (\sqrt {2} x - \sqrt {2 \, x^{2} + x}\right )} - 1 \right |}\right ) \mathrm {sgn}\left (2 \, x + 1\right ) + 4 \, \sqrt {2 \, x^{2} + x} \mathrm {sgn}\left (2 \, x + 1\right )\right )} \] Input:

integrate((1-1/(1+2*x))^(1/2),x, algorithm="giac")
 

Output:

1/8*sqrt(2)*(sqrt(2)*log(abs(-2*sqrt(2)*(sqrt(2)*x - sqrt(2*x^2 + x)) - 1) 
)*sgn(2*x + 1) + 4*sqrt(2*x^2 + x)*sgn(2*x + 1))
 

Mupad [B] (verification not implemented)

Time = 9.20 (sec) , antiderivative size = 57, normalized size of antiderivative = 1.54 \[ \int \sqrt {1-\frac {1}{1+2 x}} \, dx=-\frac {\left (2\,x+1\right )\,\left (\frac {\ln \left (2\,x+\sqrt {{\left (2\,x+1\right )}^2-2\,x-1}+\frac {1}{2}\right )}{\sqrt {{\left (2\,x+1\right )}^2-2\,x-1}}-2\right )\,\sqrt {1-\frac {1}{2\,x+1}}}{4} \] Input:

int((1 - 1/(2*x + 1))^(1/2),x)
 

Output:

-((2*x + 1)*(log(2*x + ((2*x + 1)^2 - 2*x - 1)^(1/2) + 1/2)/((2*x + 1)^2 - 
 2*x - 1)^(1/2) - 2)*(1 - 1/(2*x + 1))^(1/2))/4
 

Reduce [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.76 \[ \int \sqrt {1-\frac {1}{1+2 x}} \, dx=\frac {\sqrt {x}\, \sqrt {2 x +1}\, \sqrt {2}}{2}-\frac {\mathrm {log}\left (\sqrt {2 x +1}+\sqrt {x}\, \sqrt {2}\right )}{2} \] Input:

int((1-1/(1+2*x))^(1/2),x)
 

Output:

(sqrt(x)*sqrt(2*x + 1)*sqrt(2) - log(sqrt(2*x + 1) + sqrt(x)*sqrt(2)))/2