\(\int \frac {(a+\frac {b}{c+d x})^p}{x} \, dx\) [57]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 17, antiderivative size = 105 \[ \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx=-\frac {c \left (a+\frac {b}{c+d x}\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {c \left (a+\frac {b}{c+d x}\right )}{b+a c}\right )}{(b+a c) (1+p)}+\frac {\left (a+\frac {b}{c+d x}\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,1+\frac {b}{a (c+d x)}\right )}{a (1+p)} \] Output:

-c*(a+b/(d*x+c))^(p+1)*hypergeom([1, p+1],[2+p],c*(a+b/(d*x+c))/(a*c+b))/( 
a*c+b)/(p+1)+(a+b/(d*x+c))^(p+1)*hypergeom([1, p+1],[2+p],1+b/a/(d*x+c))/a 
/(p+1)
 

Mathematica [F]

\[ \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx=\int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx \] Input:

Integrate[(a + b/(c + d*x))^p/x,x]
 

Output:

Integrate[(a + b/(c + d*x))^p/x, x]
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {896, 25, 941, 948, 25, 97, 75, 78}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx\)

\(\Big \downarrow \) 896

\(\displaystyle \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{d x}d(c+d x)\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\frac {\left (a+\frac {b}{c+d x}\right )^p}{d x}d(c+d x)\)

\(\Big \downarrow \) 941

\(\displaystyle -\int \frac {\left (a+\frac {b}{c+d x}\right )^p}{(c+d x) \left (\frac {c}{c+d x}-1\right )}d(c+d x)\)

\(\Big \downarrow \) 948

\(\displaystyle \int -\frac {(c+d x) \left (a+\frac {b}{c+d x}\right )^p}{1-\frac {c}{c+d x}}d\frac {1}{c+d x}\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {(c+d x) \left (a+\frac {b}{c+d x}\right )^p}{1-\frac {c}{c+d x}}d\frac {1}{c+d x}\)

\(\Big \downarrow \) 97

\(\displaystyle -\int (c+d x) \left (a+\frac {b}{c+d x}\right )^pd\frac {1}{c+d x}-c \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{1-\frac {c}{c+d x}}d\frac {1}{c+d x}\)

\(\Big \downarrow \) 75

\(\displaystyle \frac {\left (a+\frac {b}{c+d x}\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {b}{a (c+d x)}+1\right )}{a (p+1)}-c \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{1-\frac {c}{c+d x}}d\frac {1}{c+d x}\)

\(\Big \downarrow \) 78

\(\displaystyle \frac {\left (a+\frac {b}{c+d x}\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {b}{a (c+d x)}+1\right )}{a (p+1)}-\frac {c \left (a+\frac {b}{c+d x}\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {c \left (a+\frac {b}{c+d x}\right )}{b+a c}\right )}{(p+1) (a c+b)}\)

Input:

Int[(a + b/(c + d*x))^p/x,x]
 

Output:

-((c*(a + b/(c + d*x))^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, (c*(a + 
b/(c + d*x)))/(b + a*c)])/((b + a*c)*(1 + p))) + ((a + b/(c + d*x))^(1 + p 
)*Hypergeometric2F1[1, 1 + p, 2 + p, 1 + b/(a*(c + d*x))])/(a*(1 + p))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 75
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x 
)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))*Hypergeometric2F1[-m, n + 1, n + 2, 1 + 
 d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (IntegerQ[m] 
 || GtQ[-d/(b*c), 0])
 

rule 78
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b 
*c - a*d)^n*((a + b*x)^(m + 1)/(b^(n + 1)*(m + 1)))*Hypergeometric2F1[-n, m 
 + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m}, x] 
 &&  !IntegerQ[m] && IntegerQ[n]
 

rule 97
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Simp[b/(b*c - a*d)   Int[(e + f*x)^p/(a + b*x), x], x] - Simp[d/(b*c 
 - a*d)   Int[(e + f*x)^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, p}, 
 x] &&  !IntegerQ[p]
 

rule 896
Int[((a_) + (b_.)*(v_)^(n_))^(p_.)*(x_)^(m_.), x_Symbol] :> With[{c = Coeff 
icient[v, x, 0], d = Coefficient[v, x, 1]}, Simp[1/d^(m + 1)   Subst[Int[Si 
mplifyIntegrand[(x - c)^m*(a + b*x^n)^p, x], x], x, v], x] /; NeQ[c, 0]] /; 
 FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && IntegerQ[m]
 

rule 941
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Sym 
bol] :> Int[(a + b*x^n)^p*((d + c*x^n)^q/x^(n*q)), x] /; FreeQ[{a, b, c, d, 
 n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] ||  !IntegerQ[p])
 

rule 948
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^ 
p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ 
[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
 
Maple [F]

\[\int \frac {\left (a +\frac {b}{d x +c}\right )^{p}}{x}d x\]

Input:

int((a+b/(d*x+c))^p/x,x)
 

Output:

int((a+b/(d*x+c))^p/x,x)
 

Fricas [F]

\[ \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx=\int { \frac {{\left (a + \frac {b}{d x + c}\right )}^{p}}{x} \,d x } \] Input:

integrate((a+b/(d*x+c))^p/x,x, algorithm="fricas")
 

Output:

integral(((a*d*x + a*c + b)/(d*x + c))^p/x, x)
 

Sympy [F]

\[ \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx=\int \frac {\left (\frac {a c + a d x + b}{c + d x}\right )^{p}}{x}\, dx \] Input:

integrate((a+b/(d*x+c))**p/x,x)
 

Output:

Integral(((a*c + a*d*x + b)/(c + d*x))**p/x, x)
 

Maxima [F]

\[ \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx=\int { \frac {{\left (a + \frac {b}{d x + c}\right )}^{p}}{x} \,d x } \] Input:

integrate((a+b/(d*x+c))^p/x,x, algorithm="maxima")
 

Output:

integrate((a + b/(d*x + c))^p/x, x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((a+b/(d*x+c))^p/x,x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:Unable to divide, perhaps due to rounding error%%%{-1,[ 
0,1,1,0]%%%} / %%%{1,[0,0,0,1]%%%} Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx=\int \frac {{\left (a+\frac {b}{c+d\,x}\right )}^p}{x} \,d x \] Input:

int((a + b/(c + d*x))^p/x,x)
 

Output:

int((a + b/(c + d*x))^p/x, x)
 

Reduce [F]

\[ \int \frac {\left (a+\frac {b}{c+d x}\right )^p}{x} \, dx=\int \frac {\left (a d x +a c +b \right )^{p}}{\left (d x +c \right )^{p} x}d x \] Input:

int((a+b/(d*x+c))^p/x,x)
 

Output:

int((a*c + a*d*x + b)**p/((c + d*x)**p*x),x)