\(\int \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \, dx\) [103]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 190 \[ \int \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \, dx=-\frac {32}{5} \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{5/2}+\frac {48}{7} \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{7/2}+\frac {112}{9} \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{9/2}-\frac {320}{11} \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{11/2}+\frac {288}{13} \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{13/2}-\frac {112}{15} \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{15/2}+\frac {16}{17} \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{17/2} \] Output:

-32/5*(1+(1+(1+x^(1/2))^(1/2))^(1/2))^(5/2)+48/7*(1+(1+(1+x^(1/2))^(1/2))^ 
(1/2))^(7/2)+112/9*(1+(1+(1+x^(1/2))^(1/2))^(1/2))^(9/2)-320/11*(1+(1+(1+x 
^(1/2))^(1/2))^(1/2))^(11/2)+288/13*(1+(1+(1+x^(1/2))^(1/2))^(1/2))^(13/2) 
-112/15*(1+(1+(1+x^(1/2))^(1/2))^(1/2))^(15/2)+16/17*(1+(1+(1+x^(1/2))^(1/ 
2))^(1/2))^(17/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 168, normalized size of antiderivative = 0.88 \[ \int \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \, dx=\frac {16 \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \left (-8 \left (3519-1094 \sqrt {1+\sqrt {1+\sqrt {x}}}+163 \sqrt {1+\sqrt {x}}+584 \sqrt {1+\sqrt {1+\sqrt {x}}} \sqrt {1+\sqrt {x}}\right )+7 \left (659-504 \sqrt {1+\sqrt {1+\sqrt {x}}}+33 \sqrt {1+\sqrt {x}}+429 \sqrt {1+\sqrt {1+\sqrt {x}}} \sqrt {1+\sqrt {x}}\right ) \sqrt {x}+45045 x\right )}{765765} \] Input:

Integrate[Sqrt[1 + Sqrt[1 + Sqrt[1 + Sqrt[x]]]],x]
 

Output:

(16*Sqrt[1 + Sqrt[1 + Sqrt[1 + Sqrt[x]]]]*(-8*(3519 - 1094*Sqrt[1 + Sqrt[1 
 + Sqrt[x]]] + 163*Sqrt[1 + Sqrt[x]] + 584*Sqrt[1 + Sqrt[1 + Sqrt[x]]]*Sqr 
t[1 + Sqrt[x]]) + 7*(659 - 504*Sqrt[1 + Sqrt[1 + Sqrt[x]]] + 33*Sqrt[1 + S 
qrt[x]] + 429*Sqrt[1 + Sqrt[1 + Sqrt[x]]]*Sqrt[1 + Sqrt[x]])*Sqrt[x] + 450 
45*x))/765765
 

Rubi [A] (verified)

Time = 1.12 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {7267, 7267, 25, 7267, 2003, 2115, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sqrt {\sqrt {\sqrt {x}+1}+1}+1} \, dx\)

\(\Big \downarrow \) 7267

\(\displaystyle 2 \int \sqrt {\sqrt {\sqrt {\sqrt {x}+1}+1}+1} \sqrt {x}d\sqrt {x}\)

\(\Big \downarrow \) 7267

\(\displaystyle 4 \int -\sqrt {\sqrt {\sqrt {\sqrt {x}+1}+1}+1} \sqrt {\sqrt {x}+1} (1-x)d\sqrt {\sqrt {x}+1}\)

\(\Big \downarrow \) 25

\(\displaystyle -4 \int \sqrt {\sqrt {\sqrt {\sqrt {x}+1}+1}+1} \sqrt {\sqrt {x}+1} (1-x)d\sqrt {\sqrt {x}+1}\)

\(\Big \downarrow \) 7267

\(\displaystyle 8 \int \sqrt {\sqrt {\sqrt {\sqrt {x}+1}+1}+1} (1-x) (2-x) x^{3/2}d\sqrt {\sqrt {\sqrt {x}+1}+1}\)

\(\Big \downarrow \) 2003

\(\displaystyle 8 \int \left (1-\sqrt {\sqrt {\sqrt {x}+1}+1}\right ) \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{3/2} (2-x) x^{3/2}d\sqrt {\sqrt {\sqrt {x}+1}+1}\)

\(\Big \downarrow \) 2115

\(\displaystyle 8 \int \left (\left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{15/2}-7 \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{13/2}+18 \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{11/2}-20 \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{9/2}+7 \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{7/2}+3 \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{5/2}-2 \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{3/2}\right )d\sqrt {\sqrt {\sqrt {x}+1}+1}\)

\(\Big \downarrow \) 2009

\(\displaystyle 8 \left (\frac {2}{17} \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{17/2}-\frac {14}{15} \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{15/2}+\frac {36}{13} \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{13/2}-\frac {40}{11} \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{11/2}+\frac {14}{9} \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{9/2}+\frac {6}{7} \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{7/2}-\frac {4}{5} \left (\sqrt {\sqrt {\sqrt {x}+1}+1}+1\right )^{5/2}\right )\)

Input:

Int[Sqrt[1 + Sqrt[1 + Sqrt[1 + Sqrt[x]]]],x]
 

Output:

8*((-4*(1 + Sqrt[1 + Sqrt[1 + Sqrt[x]]])^(5/2))/5 + (6*(1 + Sqrt[1 + Sqrt[ 
1 + Sqrt[x]]])^(7/2))/7 + (14*(1 + Sqrt[1 + Sqrt[1 + Sqrt[x]]])^(9/2))/9 - 
 (40*(1 + Sqrt[1 + Sqrt[1 + Sqrt[x]]])^(11/2))/11 + (36*(1 + Sqrt[1 + Sqrt 
[1 + Sqrt[x]]])^(13/2))/13 - (14*(1 + Sqrt[1 + Sqrt[1 + Sqrt[x]]])^(15/2)) 
/15 + (2*(1 + Sqrt[1 + Sqrt[1 + Sqrt[x]]])^(17/2))/17)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2003
Int[(u_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] : 
> Int[u*(c + d*x)^(n + p)*(a/c + (b/d)*x)^p, x] /; FreeQ[{a, b, c, d, n, p} 
, x] && EqQ[b*c^2 + a*d^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[c, 0] && 
  !IntegerQ[n]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2115
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f 
_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)^m*(c + d*x)^ 
n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[Px, 
 x] && IntegersQ[m, n]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 
Maple [A] (verified)

Time = 0.82 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.64

method result size
derivativedivides \(-\frac {32 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {5}{2}}}{5}+\frac {48 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {7}{2}}}{7}+\frac {112 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {9}{2}}}{9}-\frac {320 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {11}{2}}}{11}+\frac {288 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {13}{2}}}{13}-\frac {112 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {15}{2}}}{15}+\frac {16 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {17}{2}}}{17}\) \(121\)
default \(-\frac {32 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {5}{2}}}{5}+\frac {48 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {7}{2}}}{7}+\frac {112 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {9}{2}}}{9}-\frac {320 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {11}{2}}}{11}+\frac {288 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {13}{2}}}{13}-\frac {112 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {15}{2}}}{15}+\frac {16 \left (1+\sqrt {1+\sqrt {1+\sqrt {x}}}\right )^{\frac {17}{2}}}{17}\) \(121\)

Input:

int((1+(1+(1+x^(1/2))^(1/2))^(1/2))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-32/5*(1+(1+(1+x^(1/2))^(1/2))^(1/2))^(5/2)+48/7*(1+(1+(1+x^(1/2))^(1/2))^ 
(1/2))^(7/2)+112/9*(1+(1+(1+x^(1/2))^(1/2))^(1/2))^(9/2)-320/11*(1+(1+(1+x 
^(1/2))^(1/2))^(1/2))^(11/2)+288/13*(1+(1+(1+x^(1/2))^(1/2))^(1/2))^(13/2) 
-112/15*(1+(1+(1+x^(1/2))^(1/2))^(1/2))^(15/2)+16/17*(1+(1+(1+x^(1/2))^(1/ 
2))^(1/2))^(17/2)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.40 \[ \int \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \, dx=\frac {16}{765765} \, {\left ({\left (231 \, \sqrt {x} - 1304\right )} \sqrt {\sqrt {x} + 1} + {\left ({\left (3003 \, \sqrt {x} - 4672\right )} \sqrt {\sqrt {x} + 1} - 3528 \, \sqrt {x} + 8752\right )} \sqrt {\sqrt {\sqrt {x} + 1} + 1} + 45045 \, x + 4613 \, \sqrt {x} - 28152\right )} \sqrt {\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1} \] Input:

integrate((1+(1+(1+x^(1/2))^(1/2))^(1/2))^(1/2),x, algorithm="fricas")
 

Output:

16/765765*((231*sqrt(x) - 1304)*sqrt(sqrt(x) + 1) + ((3003*sqrt(x) - 4672) 
*sqrt(sqrt(x) + 1) - 3528*sqrt(x) + 8752)*sqrt(sqrt(sqrt(x) + 1) + 1) + 45 
045*x + 4613*sqrt(x) - 28152)*sqrt(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)
 

Sympy [A] (verification not implemented)

Time = 0.66 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.87 \[ \int \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \, dx=\frac {16 \left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )^{\frac {17}{2}}}{17} - \frac {112 \left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )^{\frac {15}{2}}}{15} + \frac {288 \left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )^{\frac {13}{2}}}{13} - \frac {320 \left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )^{\frac {11}{2}}}{11} + \frac {112 \left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )^{\frac {9}{2}}}{9} + \frac {48 \left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )^{\frac {7}{2}}}{7} - \frac {32 \left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )^{\frac {5}{2}}}{5} \] Input:

integrate((1+(1+(1+x**(1/2))**(1/2))**(1/2))**(1/2),x)
 

Output:

16*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)**(17/2)/17 - 112*(sqrt(sqrt(sqrt(x) + 
 1) + 1) + 1)**(15/2)/15 + 288*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)**(13/2)/1 
3 - 320*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)**(11/2)/11 + 112*(sqrt(sqrt(sqrt 
(x) + 1) + 1) + 1)**(9/2)/9 + 48*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)**(7/2)/ 
7 - 32*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)**(5/2)/5
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.63 \[ \int \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \, dx=\frac {16}{17} \, {\left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )}^{\frac {17}{2}} - \frac {112}{15} \, {\left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )}^{\frac {15}{2}} + \frac {288}{13} \, {\left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )}^{\frac {13}{2}} - \frac {320}{11} \, {\left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )}^{\frac {11}{2}} + \frac {112}{9} \, {\left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )}^{\frac {9}{2}} + \frac {48}{7} \, {\left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )}^{\frac {7}{2}} - \frac {32}{5} \, {\left (\sqrt {\sqrt {\sqrt {x} + 1} + 1} + 1\right )}^{\frac {5}{2}} \] Input:

integrate((1+(1+(1+x^(1/2))^(1/2))^(1/2))^(1/2),x, algorithm="maxima")
 

Output:

16/17*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)^(17/2) - 112/15*(sqrt(sqrt(sqrt(x) 
 + 1) + 1) + 1)^(15/2) + 288/13*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)^(13/2) - 
 320/11*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)^(11/2) + 112/9*(sqrt(sqrt(sqrt(x 
) + 1) + 1) + 1)^(9/2) + 48/7*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)^(7/2) - 32 
/5*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)^(5/2)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7916 vs. \(2 (120) = 240\).

Time = 39.83 (sec) , antiderivative size = 7916, normalized size of antiderivative = 41.66 \[ \int \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \, dx=\text {Too large to display} \] Input:

integrate((1+(1+(1+x^(1/2))^(1/2))^(1/2))^(1/2),x, algorithm="giac")
 

Output:

16/765765*(7*(6435*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)^(17/2) - 58344*(sqrt( 
sqrt(sqrt(x) + 1) + 1) + 1)^(15/2) + 235620*(sqrt(sqrt(sqrt(x) + 1) + 1) + 
 1)^(13/2) - 556920*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)^(11/2) + 850850*(sqr 
t(sqrt(sqrt(x) + 1) + 1) + 1)^(9/2) - 875160*(sqrt(sqrt(sqrt(x) + 1) + 1) 
+ 1)^(7/2) + 612612*(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)^(5/2) - 291720*(sqrt 
(sqrt(sqrt(x) + 1) + 1) + 1)^(3/2) + 109395*sqrt(sqrt(sqrt(sqrt(x) + 1) + 
1) + 1))*sgn(70368744177664*(sqrt(sqrt(x) + 1) + 1)^92 - 6473924464345088* 
(sqrt(sqrt(x) + 1) + 1)^91 + 291326600895528960*(sqrt(sqrt(x) + 1) + 1)^90 
 - 8545580292935516160*(sqrt(sqrt(x) + 1) + 1)^89 + 183728762437276532736* 
(sqrt(sqrt(x) + 1) + 1)^88 - 3086556782054646743040*(sqrt(sqrt(x) + 1) + 1 
)^87 + 42179809308639429132288*(sqrt(sqrt(x) + 1) + 1)^86 - 48197884682284 
1400164352*(sqrt(sqrt(x) + 1) + 1)^85 + 4697911198078384159588352*(sqrt(sq 
rt(x) + 1) + 1)^84 - 39651330432185076620984320*(sqrt(sqrt(x) + 1) + 1)^83 
 + 293183639716003233721745408*(sqrt(sqrt(x) + 1) + 1)^82 - 19166563364402 
69370174734336*(sqrt(sqrt(x) + 1) + 1)^81 + 11160164453620451334571425792* 
(sqrt(sqrt(x) + 1) + 1)^80 - 58223902019906429347317153792*(sqrt(sqrt(x) + 
 1) + 1)^79 + 273479024956137655533112918016*(sqrt(sqrt(x) + 1) + 1)^78 - 
1160956607882993155309408616448*(sqrt(sqrt(x) + 1) + 1)^77 + 4467886822469 
532994953426239488*(sqrt(sqrt(x) + 1) + 1)^76 - 15624039803063454614788052 
615168*(sqrt(sqrt(x) + 1) + 1)^75 + 49728771914087708805425247813632*(s...
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \, dx=\int \sqrt {\sqrt {\sqrt {\sqrt {x}+1}+1}+1} \,d x \] Input:

int((((x^(1/2) + 1)^(1/2) + 1)^(1/2) + 1)^(1/2),x)
 

Output:

int((((x^(1/2) + 1)^(1/2) + 1)^(1/2) + 1)^(1/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.48 \[ \int \sqrt {1+\sqrt {1+\sqrt {1+\sqrt {x}}}} \, dx=\frac {16 \sqrt {\sqrt {\sqrt {\sqrt {x}+1}+1}+1}\, \left (3003 \sqrt {x}\, \sqrt {\sqrt {x}+1}\, \sqrt {\sqrt {\sqrt {x}+1}+1}-4672 \sqrt {\sqrt {x}+1}\, \sqrt {\sqrt {\sqrt {x}+1}+1}-3528 \sqrt {x}\, \sqrt {\sqrt {\sqrt {x}+1}+1}+8752 \sqrt {\sqrt {\sqrt {x}+1}+1}+231 \sqrt {x}\, \sqrt {\sqrt {x}+1}-1304 \sqrt {\sqrt {x}+1}+4613 \sqrt {x}+45045 x -28152\right )}{765765} \] Input:

int((1+(1+(1+x^(1/2))^(1/2))^(1/2))^(1/2),x)
 

Output:

(16*sqrt(sqrt(sqrt(sqrt(x) + 1) + 1) + 1)*(3003*sqrt(x)*sqrt(sqrt(x) + 1)* 
sqrt(sqrt(sqrt(x) + 1) + 1) - 4672*sqrt(sqrt(x) + 1)*sqrt(sqrt(sqrt(x) + 1 
) + 1) - 3528*sqrt(x)*sqrt(sqrt(sqrt(x) + 1) + 1) + 8752*sqrt(sqrt(sqrt(x) 
 + 1) + 1) + 231*sqrt(x)*sqrt(sqrt(x) + 1) - 1304*sqrt(sqrt(x) + 1) + 4613 
*sqrt(x) + 45045*x - 28152))/765765