\(\int \frac {\sqrt {\frac {e (a+b x^2)}{c+d x^2}}}{x^5} \, dx\) [47]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 202 \[ \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx=-\frac {(b c-5 a d) \left (c+d x^2\right ) \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}}}{8 a c^2 x^2}-\frac {\left (c+d x^2\right )^2 \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}}}{4 c^2 x^4}+\frac {(b c-a d) (b c+3 a d) \sqrt {e} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}}}{\sqrt {a} \sqrt {e}}\right )}{8 a^{3/2} c^{5/2}} \] Output:

-1/8*(-5*a*d+b*c)*(d*x^2+c)*(b*e/d-(-a*d+b*c)*e/d/(d*x^2+c))^(1/2)/a/c^2/x 
^2-1/4*(d*x^2+c)^2*(b*e/d-(-a*d+b*c)*e/d/(d*x^2+c))^(1/2)/c^2/x^4+1/8*(-a* 
d+b*c)*(3*a*d+b*c)*e^(1/2)*arctanh(c^(1/2)*(b*e/d-(-a*d+b*c)*e/d/(d*x^2+c) 
)^(1/2)/a^(1/2)/e^(1/2))/a^(3/2)/c^(5/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.18 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.86 \[ \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx=\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2} \left (\sqrt {a} \sqrt {c} \sqrt {a+b x^2} \sqrt {c+d x^2} \left (-2 a c-b c x^2+3 a d x^2\right )+\left (b^2 c^2+2 a b c d-3 a^2 d^2\right ) x^4 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )\right )}{8 a^{3/2} c^{5/2} x^4 \sqrt {a+b x^2}} \] Input:

Integrate[Sqrt[(e*(a + b*x^2))/(c + d*x^2)]/x^5,x]
 

Output:

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[c + d*x^2]*(Sqrt[a]*Sqrt[c]*Sqrt[a 
 + b*x^2]*Sqrt[c + d*x^2]*(-2*a*c - b*c*x^2 + 3*a*d*x^2) + (b^2*c^2 + 2*a* 
b*c*d - 3*a^2*d^2)*x^4*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + 
 d*x^2])]))/(8*a^(3/2)*c^(5/2)*x^4*Sqrt[a + b*x^2])
 

Rubi [A] (warning: unable to verify)

Time = 0.59 (sec) , antiderivative size = 184, normalized size of antiderivative = 0.91, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {2053, 2052, 25, 360, 298, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx\)

\(\Big \downarrow \) 2053

\(\displaystyle \frac {1}{2} \int \frac {\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}}{x^6}dx^2\)

\(\Big \downarrow \) 2052

\(\displaystyle e (b c-a d) \int -\frac {x^4 \left (b e-d x^4\right )}{\left (a e-c x^4\right )^3}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\left (e (b c-a d) \int \frac {x^4 \left (b e-d x^4\right )}{\left (a e-c x^4\right )^3}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}\right )\)

\(\Big \downarrow \) 360

\(\displaystyle e (b c-a d) \left (\frac {\int \frac {(b c-a d) e-4 c d x^4}{\left (a e-c x^4\right )^2}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}}{4 c^2}-\frac {e (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{4 c^2 \left (a e-c x^4\right )^2}\right )\)

\(\Big \downarrow \) 298

\(\displaystyle e (b c-a d) \left (\frac {\frac {(3 a d+b c) \int \frac {1}{a e-c x^4}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}}{2 a}+\frac {(b c-5 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{2 a \left (a e-c x^4\right )}}{4 c^2}-\frac {e (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{4 c^2 \left (a e-c x^4\right )^2}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle e (b c-a d) \left (\frac {\frac {(3 a d+b c) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{2 a^{3/2} \sqrt {c} \sqrt {e}}+\frac {(b c-5 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{2 a \left (a e-c x^4\right )}}{4 c^2}-\frac {e (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{4 c^2 \left (a e-c x^4\right )^2}\right )\)

Input:

Int[Sqrt[(e*(a + b*x^2))/(c + d*x^2)]/x^5,x]
 

Output:

(b*c - a*d)*e*(-1/4*((b*c - a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(c^2 
*(a*e - c*x^4)^2) + (((b*c - 5*a*d)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(2* 
a*(a*e - c*x^4)) + ((b*c + 3*a*d)*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c 
 + d*x^2)])/(Sqrt[a]*Sqrt[e])])/(2*a^(3/2)*Sqrt[c]*Sqrt[e]))/(4*c^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 298
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-( 
b*c - a*d))*x*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] - Simp[(a*d - b*c*( 
2*p + 3))/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, 
 c, d, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/2 + p, 0])
 

rule 360
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] : 
> Simp[(-a)^(m/2 - 1)*(b*c - a*d)*x*((a + b*x^2)^(p + 1)/(2*b^(m/2 + 1)*(p 
+ 1))), x] + Simp[1/(2*b^(m/2 + 1)*(p + 1))   Int[(a + b*x^2)^(p + 1)*Expan 
dToSum[2*b*(p + 1)*x^2*Together[(b^(m/2)*x^(m - 2)*(c + d*x^2) - (-a)^(m/2 
- 1)*(b*c - a*d))/(a + b*x^2)] - (-a)^(m/2 - 1)*(b*c - a*d), x], x], x] /; 
FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IGtQ[m/2, 0] & 
& (IntegerQ[p] || EqQ[m + 2*p + 1, 0])
 

rule 2052
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_S 
ymbol] :> With[{q = Denominator[p]}, Simp[q*e*(b*c - a*d)   Subst[Int[x^(q* 
(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a + b* 
x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] 
&& IntegerQ[m]
 

rule 2053
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.) 
))^(p_), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(e*( 
(a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p}, 
 x] && IntegerQ[Simplify[(m + 1)/n]]
 
Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.00

method result size
risch \(-\frac {\left (d \,x^{2}+c \right ) \left (-3 a d \,x^{2}+b c \,x^{2}+2 a c \right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}{8 c^{2} x^{4} a}-\frac {\left (3 a^{2} d^{2}-2 a b c d -b^{2} c^{2}\right ) \ln \left (\frac {2 a c e +\left (a d e +b c e \right ) x^{2}+2 \sqrt {a c e}\, \sqrt {b d e \,x^{4}+\left (a d e +b c e \right ) x^{2}+a c e}}{x^{2}}\right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right ) e}}{16 a \,c^{2} \sqrt {a c e}\, \left (b \,x^{2}+a \right )}\) \(201\)
default \(-\frac {\sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (10 d^{2} b \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, x^{6} a \sqrt {a c}+2 d \,b^{2} \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, x^{6} c \sqrt {a c}+3 a^{3} \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) d^{2} c \,x^{4}-2 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) d b \,a^{2} c^{2} x^{4}-c^{3} \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) b^{2} a \,x^{4}+10 \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, d^{2} a^{2} x^{4} \sqrt {a c}+8 \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, a b c d \,x^{4}+2 \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, b^{2} c^{2} x^{4} \sqrt {a c}-10 \left (d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} d a \,x^{2} \sqrt {a c}-2 \left (d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} b c \,x^{2} \sqrt {a c}+4 \left (d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} a c \sqrt {a c}\right )}{16 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, c^{3} a^{2} x^{4} \sqrt {a c}}\) \(559\)

Input:

int((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^5,x,method=_RETURNVERBOSE)
 

Output:

-1/8*(d*x^2+c)*(-3*a*d*x^2+b*c*x^2+2*a*c)/c^2/x^4/a*(e*(b*x^2+a)/(d*x^2+c) 
)^(1/2)-1/16*(3*a^2*d^2-2*a*b*c*d-b^2*c^2)/a/c^2/(a*c*e)^(1/2)*ln((2*a*c*e 
+(a*d*e+b*c*e)*x^2+2*(a*c*e)^(1/2)*(b*d*e*x^4+(a*d*e+b*c*e)*x^2+a*c*e)^(1/ 
2))/x^2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)*((d*x^2+c)*(b*x^2+a)*e)^(1/2)/(b*x^ 
2+a)
 

Fricas [A] (verification not implemented)

Time = 0.51 (sec) , antiderivative size = 427, normalized size of antiderivative = 2.11 \[ \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx=\left [-\frac {{\left (b^{2} c^{2} + 2 \, a b c d - 3 \, a^{2} d^{2}\right )} x^{4} \sqrt {\frac {e}{a c}} \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} e x^{4} + 8 \, a^{2} c^{2} e + 8 \, {\left (a b c^{2} + a^{2} c d\right )} e x^{2} - 4 \, {\left (2 \, a^{2} c^{3} + {\left (a b c^{2} d + a^{2} c d^{2}\right )} x^{4} + {\left (a b c^{3} + 3 \, a^{2} c^{2} d\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {\frac {e}{a c}}}{x^{4}}\right ) + 4 \, {\left ({\left (b c d - 3 \, a d^{2}\right )} x^{4} + 2 \, a c^{2} + {\left (b c^{2} - a c d\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{32 \, a c^{2} x^{4}}, -\frac {{\left (b^{2} c^{2} + 2 \, a b c d - 3 \, a^{2} d^{2}\right )} x^{4} \sqrt {-\frac {e}{a c}} \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {-\frac {e}{a c}}}{2 \, {\left (b e x^{2} + a e\right )}}\right ) + 2 \, {\left ({\left (b c d - 3 \, a d^{2}\right )} x^{4} + 2 \, a c^{2} + {\left (b c^{2} - a c d\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{16 \, a c^{2} x^{4}}\right ] \] Input:

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^5,x, algorithm="fricas")
 

Output:

[-1/32*((b^2*c^2 + 2*a*b*c*d - 3*a^2*d^2)*x^4*sqrt(e/(a*c))*log(((b^2*c^2 
+ 6*a*b*c*d + a^2*d^2)*e*x^4 + 8*a^2*c^2*e + 8*(a*b*c^2 + a^2*c*d)*e*x^2 - 
 4*(2*a^2*c^3 + (a*b*c^2*d + a^2*c*d^2)*x^4 + (a*b*c^3 + 3*a^2*c^2*d)*x^2) 
*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(e/(a*c)))/x^4) + 4*((b*c*d - 3*a*d 
^2)*x^4 + 2*a*c^2 + (b*c^2 - a*c*d)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)) 
)/(a*c^2*x^4), -1/16*((b^2*c^2 + 2*a*b*c*d - 3*a^2*d^2)*x^4*sqrt(-e/(a*c)) 
*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sq 
rt(-e/(a*c))/(b*e*x^2 + a*e)) + 2*((b*c*d - 3*a*d^2)*x^4 + 2*a*c^2 + (b*c^ 
2 - a*c*d)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(a*c^2*x^4)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx=\text {Timed out} \] Input:

integrate((e*(b*x**2+a)/(d*x**2+c))**(1/2)/x**5,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^5,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 549 vs. \(2 (178) = 356\).

Time = 0.18 (sec) , antiderivative size = 549, normalized size of antiderivative = 2.72 \[ \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx=-\frac {1}{8} \, {\left (\frac {{\left (b^{2} c^{2} e + 2 \, a b c d e - 3 \, a^{2} d^{2} e\right )} \arctan \left (-\frac {\sqrt {b d e} x^{2} - \sqrt {b d e x^{4} + b c e x^{2} + a d e x^{2} + a c e}}{\sqrt {-a c e}}\right )}{\sqrt {-a c e} a c^{2}} - \frac {{\left (\sqrt {b d e} x^{2} - \sqrt {b d e x^{4} + b c e x^{2} + a d e x^{2} + a c e}\right )} a b^{2} c^{3} e^{2} + 10 \, {\left (\sqrt {b d e} x^{2} - \sqrt {b d e x^{4} + b c e x^{2} + a d e x^{2} + a c e}\right )} a^{2} b c^{2} d e^{2} + 5 \, {\left (\sqrt {b d e} x^{2} - \sqrt {b d e x^{4} + b c e x^{2} + a d e x^{2} + a c e}\right )} a^{3} c d^{2} e^{2} + 8 \, \sqrt {b d e} a^{3} c^{2} d e^{2} + {\left (\sqrt {b d e} x^{2} - \sqrt {b d e x^{4} + b c e x^{2} + a d e x^{2} + a c e}\right )}^{3} b^{2} c^{2} e + 2 \, {\left (\sqrt {b d e} x^{2} - \sqrt {b d e x^{4} + b c e x^{2} + a d e x^{2} + a c e}\right )}^{3} a b c d e - 3 \, {\left (\sqrt {b d e} x^{2} - \sqrt {b d e x^{4} + b c e x^{2} + a d e x^{2} + a c e}\right )}^{3} a^{2} d^{2} e + 8 \, \sqrt {b d e} {\left (\sqrt {b d e} x^{2} - \sqrt {b d e x^{4} + b c e x^{2} + a d e x^{2} + a c e}\right )}^{2} a b c^{2} e}{{\left (a c e - {\left (\sqrt {b d e} x^{2} - \sqrt {b d e x^{4} + b c e x^{2} + a d e x^{2} + a c e}\right )}^{2}\right )}^{2} a c^{2}}\right )} \mathrm {sgn}\left (d x^{2} + c\right ) \] Input:

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^5,x, algorithm="giac")
 

Output:

-1/8*((b^2*c^2*e + 2*a*b*c*d*e - 3*a^2*d^2*e)*arctan(-(sqrt(b*d*e)*x^2 - s 
qrt(b*d*e*x^4 + b*c*e*x^2 + a*d*e*x^2 + a*c*e))/sqrt(-a*c*e))/(sqrt(-a*c*e 
)*a*c^2) - ((sqrt(b*d*e)*x^2 - sqrt(b*d*e*x^4 + b*c*e*x^2 + a*d*e*x^2 + a* 
c*e))*a*b^2*c^3*e^2 + 10*(sqrt(b*d*e)*x^2 - sqrt(b*d*e*x^4 + b*c*e*x^2 + a 
*d*e*x^2 + a*c*e))*a^2*b*c^2*d*e^2 + 5*(sqrt(b*d*e)*x^2 - sqrt(b*d*e*x^4 + 
 b*c*e*x^2 + a*d*e*x^2 + a*c*e))*a^3*c*d^2*e^2 + 8*sqrt(b*d*e)*a^3*c^2*d*e 
^2 + (sqrt(b*d*e)*x^2 - sqrt(b*d*e*x^4 + b*c*e*x^2 + a*d*e*x^2 + a*c*e))^3 
*b^2*c^2*e + 2*(sqrt(b*d*e)*x^2 - sqrt(b*d*e*x^4 + b*c*e*x^2 + a*d*e*x^2 + 
 a*c*e))^3*a*b*c*d*e - 3*(sqrt(b*d*e)*x^2 - sqrt(b*d*e*x^4 + b*c*e*x^2 + a 
*d*e*x^2 + a*c*e))^3*a^2*d^2*e + 8*sqrt(b*d*e)*(sqrt(b*d*e)*x^2 - sqrt(b*d 
*e*x^4 + b*c*e*x^2 + a*d*e*x^2 + a*c*e))^2*a*b*c^2*e)/((a*c*e - (sqrt(b*d* 
e)*x^2 - sqrt(b*d*e*x^4 + b*c*e*x^2 + a*d*e*x^2 + a*c*e))^2)^2*a*c^2))*sgn 
(d*x^2 + c)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx=\int \frac {\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}}{x^5} \,d x \] Input:

int(((e*(a + b*x^2))/(c + d*x^2))^(1/2)/x^5,x)
 

Output:

int(((e*(a + b*x^2))/(c + d*x^2))^(1/2)/x^5, x)
                                                                                    
                                                                                    
 

Reduce [B] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 262, normalized size of antiderivative = 1.30 \[ \int \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{x^5} \, dx=\frac {\sqrt {e}\, \left (-2 \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, a^{2} c^{2}+3 \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, a^{2} c d \,x^{2}-\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, a b \,c^{2} x^{2}+3 \sqrt {c}\, \sqrt {a}\, \mathrm {log}\left (\sqrt {a}\, \sqrt {b \,x^{2}+a}\, c -\sqrt {c}\, \sqrt {d \,x^{2}+c}\, a \right ) a^{2} d^{2} x^{4}-2 \sqrt {c}\, \sqrt {a}\, \mathrm {log}\left (\sqrt {a}\, \sqrt {b \,x^{2}+a}\, c -\sqrt {c}\, \sqrt {d \,x^{2}+c}\, a \right ) a b c d \,x^{4}-\sqrt {c}\, \sqrt {a}\, \mathrm {log}\left (\sqrt {a}\, \sqrt {b \,x^{2}+a}\, c -\sqrt {c}\, \sqrt {d \,x^{2}+c}\, a \right ) b^{2} c^{2} x^{4}-3 \sqrt {c}\, \sqrt {a}\, \mathrm {log}\left (x \right ) a^{2} d^{2} x^{4}+2 \sqrt {c}\, \sqrt {a}\, \mathrm {log}\left (x \right ) a b c d \,x^{4}+\sqrt {c}\, \sqrt {a}\, \mathrm {log}\left (x \right ) b^{2} c^{2} x^{4}\right )}{8 a^{2} c^{3} x^{4}} \] Input:

int((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^5,x)
 

Output:

(sqrt(e)*( - 2*sqrt(c + d*x**2)*sqrt(a + b*x**2)*a**2*c**2 + 3*sqrt(c + d* 
x**2)*sqrt(a + b*x**2)*a**2*c*d*x**2 - sqrt(c + d*x**2)*sqrt(a + b*x**2)*a 
*b*c**2*x**2 + 3*sqrt(c)*sqrt(a)*log(sqrt(a)*sqrt(a + b*x**2)*c - sqrt(c)* 
sqrt(c + d*x**2)*a)*a**2*d**2*x**4 - 2*sqrt(c)*sqrt(a)*log(sqrt(a)*sqrt(a 
+ b*x**2)*c - sqrt(c)*sqrt(c + d*x**2)*a)*a*b*c*d*x**4 - sqrt(c)*sqrt(a)*l 
og(sqrt(a)*sqrt(a + b*x**2)*c - sqrt(c)*sqrt(c + d*x**2)*a)*b**2*c**2*x**4 
 - 3*sqrt(c)*sqrt(a)*log(x)*a**2*d**2*x**4 + 2*sqrt(c)*sqrt(a)*log(x)*a*b* 
c*d*x**4 + sqrt(c)*sqrt(a)*log(x)*b**2*c**2*x**4))/(8*a**2*c**3*x**4)