\(\int x^4 \sqrt {\frac {e (a+b x^2)}{c+d x^2}} \, dx\) [49]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 465 \[ \int x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=-\frac {(4 b c-a d) x \left (c+d x^2\right ) \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}}}{15 b d^2}+\frac {x^3 \left (c+d x^2\right ) \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}}}{5 d}+\frac {\left (8 b^2 c^2-3 a b c d-2 a^2 d^2\right ) x \left (c+d x^2\right ) \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}}}{15 b d^3 \left (a+b x^2\right )}-\frac {\sqrt {a} \left (8 b^2 c^2-3 a b c d-2 a^2 d^2\right ) \left (c+d x^2\right ) \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}} E\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{15 b^{3/2} d^3 \left (a+b x^2\right ) \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}+\frac {a^{3/2} (4 b c-a d) \left (c+d x^2\right ) \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),1-\frac {a d}{b c}\right )}{15 b^{3/2} d^2 \left (a+b x^2\right ) \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \] Output:

-1/15*(-a*d+4*b*c)*x*(d*x^2+c)*(b*e/d-(-a*d+b*c)*e/d/(d*x^2+c))^(1/2)/b/d^ 
2+1/5*x^3*(d*x^2+c)*(b*e/d-(-a*d+b*c)*e/d/(d*x^2+c))^(1/2)/d+1/15*(-2*a^2* 
d^2-3*a*b*c*d+8*b^2*c^2)*x*(d*x^2+c)*(b*e/d-(-a*d+b*c)*e/d/(d*x^2+c))^(1/2 
)/b/d^3/(b*x^2+a)-1/15*a^(1/2)*(-2*a^2*d^2-3*a*b*c*d+8*b^2*c^2)*(d*x^2+c)* 
(b*e/d-(-a*d+b*c)*e/d/(d*x^2+c))^(1/2)*EllipticE(b^(1/2)*x/a^(1/2)/(1+b*x^ 
2/a)^(1/2),(1-a*d/b/c)^(1/2))/b^(3/2)/d^3/(b*x^2+a)/(a*(d*x^2+c)/c/(b*x^2+ 
a))^(1/2)+1/15*a^(3/2)*(-a*d+4*b*c)*(d*x^2+c)*(b*e/d-(-a*d+b*c)*e/d/(d*x^2 
+c))^(1/2)*InverseJacobiAM(arctan(b^(1/2)*x/a^(1/2)),(1-a*d/b/c)^(1/2))/b^ 
(3/2)/d^2/(b*x^2+a)/(a*(d*x^2+c)/c/(b*x^2+a))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.63 (sec) , antiderivative size = 255, normalized size of antiderivative = 0.55 \[ \int x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\sqrt {\frac {b}{a}} d x \left (a+b x^2\right ) \left (c+d x^2\right ) \left (-4 b c+a d+3 b d x^2\right )+i c \left (-8 b^2 c^2+3 a b c d+2 a^2 d^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i c \left (-8 b^2 c^2+7 a b c d+a^2 d^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )}{15 b \sqrt {\frac {b}{a}} d^3 \left (a+b x^2\right )} \] Input:

Integrate[x^4*Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]
 

Output:

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[b/a]*d*x*(a + b*x^2)*(c + d*x^2)* 
(-4*b*c + a*d + 3*b*d*x^2) + I*c*(-8*b^2*c^2 + 3*a*b*c*d + 2*a^2*d^2)*Sqrt 
[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d 
)/(b*c)] - I*c*(-8*b^2*c^2 + 7*a*b*c*d + a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqrt 
[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(15*b*Sqr 
t[b/a]*d^3*(a + b*x^2))
 

Rubi [A] (verified)

Time = 0.94 (sec) , antiderivative size = 372, normalized size of antiderivative = 0.80, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {2058, 380, 444, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \int \frac {x^4 \sqrt {b x^2+a}}{\sqrt {d x^2+c}}dx}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 380

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {x^3 \sqrt {a+b x^2} \sqrt {c+d x^2}}{5 d}-\frac {\int \frac {x^2 \left ((4 b c-a d) x^2+3 a c\right )}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{5 d}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 444

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {x^3 \sqrt {a+b x^2} \sqrt {c+d x^2}}{5 d}-\frac {\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (4 b c-a d)}{3 b d}-\frac {\int \frac {\left (8 b^2 c^2-3 a b d c-2 a^2 d^2\right ) x^2+a c (4 b c-a d)}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{3 b d}}{5 d}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {x^3 \sqrt {a+b x^2} \sqrt {c+d x^2}}{5 d}-\frac {\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (4 b c-a d)}{3 b d}-\frac {\left (-2 a^2 d^2-3 a b c d+8 b^2 c^2\right ) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+a c (4 b c-a d) \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{3 b d}}{5 d}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {x^3 \sqrt {a+b x^2} \sqrt {c+d x^2}}{5 d}-\frac {\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (4 b c-a d)}{3 b d}-\frac {\left (-2 a^2 d^2-3 a b c d+8 b^2 c^2\right ) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+\frac {c^{3/2} \sqrt {a+b x^2} (4 b c-a d) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}}{3 b d}}{5 d}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {x^3 \sqrt {a+b x^2} \sqrt {c+d x^2}}{5 d}-\frac {\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (4 b c-a d)}{3 b d}-\frac {\left (-2 a^2 d^2-3 a b c d+8 b^2 c^2\right ) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )+\frac {c^{3/2} \sqrt {a+b x^2} (4 b c-a d) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}}{3 b d}}{5 d}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {x^3 \sqrt {a+b x^2} \sqrt {c+d x^2}}{5 d}-\frac {\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (4 b c-a d)}{3 b d}-\frac {\left (-2 a^2 d^2-3 a b c d+8 b^2 c^2\right ) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )+\frac {c^{3/2} \sqrt {a+b x^2} (4 b c-a d) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}}{3 b d}}{5 d}\right )}{\sqrt {a+b x^2}}\)

Input:

Int[x^4*Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]
 

Output:

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[c + d*x^2]*((x^3*Sqrt[a + b*x^2]*S 
qrt[c + d*x^2])/(5*d) - (((4*b*c - a*d)*x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]) 
/(3*b*d) - ((8*b^2*c^2 - 3*a*b*c*d - 2*a^2*d^2)*((x*Sqrt[a + b*x^2])/(b*Sq 
rt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqr 
t[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]* 
Sqrt[c + d*x^2])) + (c^(3/2)*(4*b*c - a*d)*Sqrt[a + b*x^2]*EllipticF[ArcTa 
n[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a 
*(c + d*x^2))]*Sqrt[c + d*x^2]))/(3*b*d))/(5*d)))/Sqrt[a + b*x^2]
 

Defintions of rubi rules used

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 380
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b* 
(m + 2*(p + q) + 1))), x] - Simp[e^2/(b*(m + 2*(p + q) + 1))   Int[(e*x)^(m 
 - 2)*(a + b*x^2)^p*(c + d*x^2)^(q - 1)*Simp[a*c*(m - 1) + (a*d*(m - 1) - 2 
*q*(b*c - a*d))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c 
- a*d, 0] && GtQ[q, 0] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, 
 q, x]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 444
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q 
_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[f*g*(g*x)^(m - 1)*(a + b*x^2)^ 
(p + 1)*((c + d*x^2)^(q + 1)/(b*d*(m + 2*(p + q + 1) + 1))), x] - Simp[g^2/ 
(b*d*(m + 2*(p + q + 1) + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^p*(c + d*x^2) 
^q*Simp[a*f*c*(m - 1) + (a*f*d*(m + 2*q + 1) + b*(f*c*(m + 2*p + 1) - e*d*( 
m + 2*(p + q + 1) + 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, 
q}, x] && GtQ[m, 1]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 
Maple [A] (verified)

Time = 4.86 (sec) , antiderivative size = 490, normalized size of antiderivative = 1.05

method result size
risch \(\frac {x \left (3 b d \,x^{2}+a d -4 b c \right ) \left (d \,x^{2}+c \right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}{15 b \,d^{2}}-\frac {\left (-\frac {2 \left (2 a^{2} d^{2}+3 a b c d -8 b^{2} c^{2}\right ) a c e \sqrt {1+\frac {x^{2} b}{a}}\, \sqrt {1+\frac {x^{2} d}{c}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c b e}}\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c b e}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (a d e +b c e +e \left (a d -b c \right )\right )}+\frac {a^{2} c d \sqrt {1+\frac {x^{2} b}{a}}\, \sqrt {1+\frac {x^{2} d}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c b e}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {4 a b \,c^{2} \sqrt {1+\frac {x^{2} b}{a}}\, \sqrt {1+\frac {x^{2} d}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c b e}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}\right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right ) e}}{15 b \,d^{2} \left (b \,x^{2}+a \right )}\) \(490\)
default \(\frac {\sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (3 \sqrt {-\frac {b}{a}}\, b^{2} d^{3} x^{7}+4 \sqrt {-\frac {b}{a}}\, a b \,d^{3} x^{5}-\sqrt {-\frac {b}{a}}\, b^{2} c \,d^{2} x^{5}+\sqrt {-\frac {b}{a}}\, a^{2} d^{3} x^{3}-4 \sqrt {-\frac {b}{a}}\, b^{2} c^{2} d \,x^{3}+\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} c \,d^{2}+7 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b \,c^{2} d -8 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{3}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} c \,d^{2}-3 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b \,c^{2} d +8 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{3}+\sqrt {-\frac {b}{a}}\, a^{2} c \,d^{2} x -4 \sqrt {-\frac {b}{a}}\, a b \,c^{2} d x \right )}{15 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, d^{3} b \sqrt {-\frac {b}{a}}\, \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}\) \(552\)

Input:

int(x^4*(e*(b*x^2+a)/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/15*x*(3*b*d*x^2+a*d-4*b*c)*(d*x^2+c)/b/d^2*(e*(b*x^2+a)/(d*x^2+c))^(1/2) 
-1/15/b/d^2*(-2*(2*a^2*d^2+3*a*b*c*d-8*b^2*c^2)*a*c*e/(-b/a)^(1/2)*(1+1/a* 
x^2*b)^(1/2)*(1+1/c*x^2*d)^(1/2)/(b*d*e*x^4+a*d*e*x^2+b*c*e*x^2+a*c*e)^(1/ 
2)/(a*d*e+b*c*e+e*(a*d-b*c))*(EllipticF(x*(-b/a)^(1/2),(-1+(a*d*e+b*c*e)/c 
/b/e)^(1/2))-EllipticE(x*(-b/a)^(1/2),(-1+(a*d*e+b*c*e)/c/b/e)^(1/2)))+a^2 
*c*d/(-b/a)^(1/2)*(1+1/a*x^2*b)^(1/2)*(1+1/c*x^2*d)^(1/2)/(b*d*e*x^4+a*d*e 
*x^2+b*c*e*x^2+a*c*e)^(1/2)*EllipticF(x*(-b/a)^(1/2),(-1+(a*d*e+b*c*e)/c/b 
/e)^(1/2))-4*a*b*c^2/(-b/a)^(1/2)*(1+1/a*x^2*b)^(1/2)*(1+1/c*x^2*d)^(1/2)/ 
(b*d*e*x^4+a*d*e*x^2+b*c*e*x^2+a*c*e)^(1/2)*EllipticF(x*(-b/a)^(1/2),(-1+( 
a*d*e+b*c*e)/c/b/e)^(1/2)))*(e*(b*x^2+a)/(d*x^2+c))^(1/2)*((d*x^2+c)*(b*x^ 
2+a)*e)^(1/2)/(b*x^2+a)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 273, normalized size of antiderivative = 0.59 \[ \int x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=-\frac {{\left (8 \, b^{2} c^{3} - 3 \, a b c^{2} d - 2 \, a^{2} c d^{2}\right )} \sqrt {\frac {b e}{d}} x \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left (8 \, b^{2} c^{3} - 3 \, a b c^{2} d - a^{2} d^{3} - 2 \, {\left (a^{2} - 2 \, a b\right )} c d^{2}\right )} \sqrt {\frac {b e}{d}} x \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left (3 \, b^{2} d^{3} x^{6} + 8 \, b^{2} c^{3} - 3 \, a b c^{2} d - 2 \, a^{2} c d^{2} - {\left (b^{2} c d^{2} - a b d^{3}\right )} x^{4} + 2 \, {\left (2 \, b^{2} c^{2} d - a b c d^{2} - a^{2} d^{3}\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{15 \, b^{2} d^{3} x} \] Input:

integrate(x^4*(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")
 

Output:

-1/15*((8*b^2*c^3 - 3*a*b*c^2*d - 2*a^2*c*d^2)*sqrt(b*e/d)*x*sqrt(-c/d)*el 
liptic_e(arcsin(sqrt(-c/d)/x), a*d/(b*c)) - (8*b^2*c^3 - 3*a*b*c^2*d - a^2 
*d^3 - 2*(a^2 - 2*a*b)*c*d^2)*sqrt(b*e/d)*x*sqrt(-c/d)*elliptic_f(arcsin(s 
qrt(-c/d)/x), a*d/(b*c)) - (3*b^2*d^3*x^6 + 8*b^2*c^3 - 3*a*b*c^2*d - 2*a^ 
2*c*d^2 - (b^2*c*d^2 - a*b*d^3)*x^4 + 2*(2*b^2*c^2*d - a*b*c*d^2 - a^2*d^3 
)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(b^2*d^3*x)
 

Sympy [F(-1)]

Timed out. \[ \int x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\text {Timed out} \] Input:

integrate(x**4*(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\int { \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} x^{4} \,d x } \] Input:

integrate(x^4*(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c))*x^4, x)
 

Giac [F]

\[ \int x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\int { \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} x^{4} \,d x } \] Input:

integrate(x^4*(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c))*x^4, x)
 

Mupad [F(-1)]

Timed out. \[ \int x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\int x^4\,\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}} \,d x \] Input:

int(x^4*((e*(a + b*x^2))/(c + d*x^2))^(1/2),x)
 

Output:

int(x^4*((e*(a + b*x^2))/(c + d*x^2))^(1/2), x)
 

Reduce [F]

\[ \int x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\frac {\sqrt {e}\, \left (\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, a d x -4 \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, b c x +3 \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, b d \,x^{3}-2 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{2}}{b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}d x \right ) a^{2} d^{2}-3 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{2}}{b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}d x \right ) a b c d +8 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{2}}{b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}d x \right ) b^{2} c^{2}-\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}d x \right ) a^{2} c d +4 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}d x \right ) a b \,c^{2}\right )}{15 b \,d^{2}} \] Input:

int(x^4*(e*(b*x^2+a)/(d*x^2+c))^(1/2),x)
 

Output:

(sqrt(e)*(sqrt(c + d*x**2)*sqrt(a + b*x**2)*a*d*x - 4*sqrt(c + d*x**2)*sqr 
t(a + b*x**2)*b*c*x + 3*sqrt(c + d*x**2)*sqrt(a + b*x**2)*b*d*x**3 - 2*int 
((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**2)/(a*c + a*d*x**2 + b*c*x**2 + b*d 
*x**4),x)*a**2*d**2 - 3*int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**2)/(a*c 
+ a*d*x**2 + b*c*x**2 + b*d*x**4),x)*a*b*c*d + 8*int((sqrt(c + d*x**2)*sqr 
t(a + b*x**2)*x**2)/(a*c + a*d*x**2 + b*c*x**2 + b*d*x**4),x)*b**2*c**2 - 
int((sqrt(c + d*x**2)*sqrt(a + b*x**2))/(a*c + a*d*x**2 + b*c*x**2 + b*d*x 
**4),x)*a**2*c*d + 4*int((sqrt(c + d*x**2)*sqrt(a + b*x**2))/(a*c + a*d*x* 
*2 + b*c*x**2 + b*d*x**4),x)*a*b*c**2))/(15*b*d**2)