\(\int \sqrt {\frac {e (a+b x^2)}{c+d x^2}} \, dx\) [51]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 230 \[ \int \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=x \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}}-\frac {\sqrt {c} \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\sqrt {c} \sqrt {\frac {b e}{d}-\frac {(b c-a d) e}{d \left (c+d x^2\right )}} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \] Output:

x*(b*e/d-(-a*d+b*c)*e/d/(d*x^2+c))^(1/2)-c^(1/2)*(b*e/d-(-a*d+b*c)*e/d/(d* 
x^2+c))^(1/2)*EllipticE(d^(1/2)*x/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1 
/2))/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)+c^(1/2)*(b*e/d-(-a*d+b*c)*e/d 
/(d*x^2+c))^(1/2)*InverseJacobiAM(arctan(d^(1/2)*x/c^(1/2)),(1-b*c/a/d)^(1 
/2))/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)
 

Mathematica [A] (verified)

Time = 1.83 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.37 \[ \int \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {\frac {c+d x^2}{c}} E\left (\arcsin \left (\sqrt {-\frac {d}{c}} x\right )|\frac {b c}{a d}\right )}{\sqrt {-\frac {d}{c}} \sqrt {\frac {a+b x^2}{a}}} \] Input:

Integrate[Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]
 

Output:

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[(c + d*x^2)/c]*EllipticE[ArcSin[Sq 
rt[-(d/c)]*x], (b*c)/(a*d)])/(Sqrt[-(d/c)]*Sqrt[(a + b*x^2)/a])
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.08, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {2058, 324, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2+c}}dx}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 324

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (a \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+b \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (b \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+\frac {\sqrt {c} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (b \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )+\frac {\sqrt {c} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {\sqrt {c} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+b \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\right )}{\sqrt {a+b x^2}}\)

Input:

Int[Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]
 

Output:

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[c + d*x^2]*(b*((x*Sqrt[a + b*x^2]) 
/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]* 
x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x 
^2))]*Sqrt[c + d*x^2])) + (Sqrt[c]*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[ 
d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d* 
x^2))]*Sqrt[c + d*x^2])))/Sqrt[a + b*x^2]
 

Defintions of rubi rules used

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 324
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
a   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] + Simp[b   Int[x^2/(Sqr 
t[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[d/c 
] && PosQ[b/a]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 
Maple [A] (verified)

Time = 0.71 (sec) , antiderivative size = 184, normalized size of antiderivative = 0.80

method result size
default \(\frac {\sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \left (a \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) d -b c \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right )+b c \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right )\right )}{\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, \sqrt {d b \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, d}\) \(184\)

Input:

int((e*(b*x^2+a)/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

(e*(b*x^2+a)/(d*x^2+c))^(1/2)*(d*x^2+c)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^ 
(1/2)*(a*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*d-b*c*EllipticF(x*(-b/a 
)^(1/2),(a*d/b/c)^(1/2))+b*c*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2)))/(( 
d*x^2+c)*(b*x^2+a))^(1/2)/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2) 
/d
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.65 \[ \int \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=-\frac {b c^{2} \sqrt {\frac {b e}{d}} x \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left (b c^{2} + a d^{2}\right )} \sqrt {\frac {b e}{d}} x \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left (b c d x^{2} + b c^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{b c d x} \] Input:

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")
 

Output:

-(b*c^2*sqrt(b*e/d)*x*sqrt(-c/d)*elliptic_e(arcsin(sqrt(-c/d)/x), a*d/(b*c 
)) - (b*c^2 + a*d^2)*sqrt(b*e/d)*x*sqrt(-c/d)*elliptic_f(arcsin(sqrt(-c/d) 
/x), a*d/(b*c)) - (b*c*d*x^2 + b*c^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/( 
b*c*d*x)
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\text {Timed out} \] Input:

integrate((e*(b*x**2+a)/(d*x**2+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\int { \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} \,d x } \] Input:

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c)), x)
 

Giac [F]

\[ \int \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\int { \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} \,d x } \] Input:

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\int \sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}} \,d x \] Input:

int(((e*(a + b*x^2))/(c + d*x^2))^(1/2),x)
 

Output:

int(((e*(a + b*x^2))/(c + d*x^2))^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\sqrt {e}\, \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{d \,x^{2}+c}d x \right ) \] Input:

int((e*(b*x^2+a)/(d*x^2+c))^(1/2),x)
 

Output:

sqrt(e)*int((sqrt(c + d*x**2)*sqrt(a + b*x**2))/(c + d*x**2),x)