\(\int \frac {(d+e x)^5}{(b x+c x^2)^2} \, dx\) [63]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 118 \[ \int \frac {(d+e x)^5}{\left (b x+c x^2\right )^2} \, dx=-\frac {d^5}{b^2 x}+\frac {e^4 (5 c d-2 b e) x}{c^3}+\frac {e^5 x^2}{2 c^2}-\frac {(c d-b e)^5}{b^2 c^4 (b+c x)}-\frac {d^4 (2 c d-5 b e) \log (x)}{b^3}+\frac {(c d-b e)^4 (2 c d+3 b e) \log (b+c x)}{b^3 c^4} \] Output:

-d^5/b^2/x+e^4*(-2*b*e+5*c*d)*x/c^3+1/2*e^5*x^2/c^2-(-b*e+c*d)^5/b^2/c^4/( 
c*x+b)-d^4*(-5*b*e+2*c*d)*ln(x)/b^3+(-b*e+c*d)^4*(3*b*e+2*c*d)*ln(c*x+b)/b 
^3/c^4
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.98 \[ \int \frac {(d+e x)^5}{\left (b x+c x^2\right )^2} \, dx=-\frac {d^5}{b^2 x}+\frac {e^4 (5 c d-2 b e) x}{c^3}+\frac {e^5 x^2}{2 c^2}+\frac {(-c d+b e)^5}{b^2 c^4 (b+c x)}+\frac {d^4 (-2 c d+5 b e) \log (x)}{b^3}+\frac {(c d-b e)^4 (2 c d+3 b e) \log (b+c x)}{b^3 c^4} \] Input:

Integrate[(d + e*x)^5/(b*x + c*x^2)^2,x]
 

Output:

-(d^5/(b^2*x)) + (e^4*(5*c*d - 2*b*e)*x)/c^3 + (e^5*x^2)/(2*c^2) + (-(c*d) 
 + b*e)^5/(b^2*c^4*(b + c*x)) + (d^4*(-2*c*d + 5*b*e)*Log[x])/b^3 + ((c*d 
- b*e)^4*(2*c*d + 3*b*e)*Log[b + c*x])/(b^3*c^4)
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.08, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {1141, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^5}{\left (b x+c x^2\right )^2} \, dx\)

\(\Big \downarrow \) 1141

\(\displaystyle c^2 \int \left (\frac {d^5}{b^2 c^2 x^2}-\frac {(2 c d-5 b e) d^4}{b^3 c^2 x}+\frac {e^4 (5 c d-2 b e)}{c^5}+\frac {e^5 x}{c^4}+\frac {(c d-b e)^4 (2 c d+3 b e)}{b^3 c^5 (b+c x)}+\frac {(c d-b e)^5}{b^2 c^5 (b+c x)^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle c^2 \left (\frac {(c d-b e)^4 (3 b e+2 c d) \log (b+c x)}{b^3 c^6}-\frac {d^4 \log (x) (2 c d-5 b e)}{b^3 c^2}-\frac {(c d-b e)^5}{b^2 c^6 (b+c x)}-\frac {d^5}{b^2 c^2 x}+\frac {e^4 x (5 c d-2 b e)}{c^5}+\frac {e^5 x^2}{2 c^4}\right )\)

Input:

Int[(d + e*x)^5/(b*x + c*x^2)^2,x]
 

Output:

c^2*(-(d^5/(b^2*c^2*x)) + (e^4*(5*c*d - 2*b*e)*x)/c^5 + (e^5*x^2)/(2*c^4) 
- (c*d - b*e)^5/(b^2*c^6*(b + c*x)) - (d^4*(2*c*d - 5*b*e)*Log[x])/(b^3*c^ 
2) + ((c*d - b*e)^4*(2*c*d + 3*b*e)*Log[b + c*x])/(b^3*c^6))
 

Defintions of rubi rules used

rule 1141
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_ 
Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[1/c^p   Int[ExpandIntegrand[ 
(d + e*x)^m*(b/2 - q/2 + c*x)^p*(b/2 + q/2 + c*x)^p, x], x], x] /; EqQ[p, - 
1] ||  !FractionalPowerFactorQ[q]] /; FreeQ[{a, b, c, d, e}, x] && ILtQ[p, 
0] && IntegerQ[m] && NiceSqrtQ[b^2 - 4*a*c]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.69

method result size
default \(-\frac {e^{4} \left (-\frac {1}{2} c e \,x^{2}+2 b e x -5 c d x \right )}{c^{3}}+\frac {\left (3 b^{5} e^{5}-10 b^{4} d \,e^{4} c +10 b^{3} d^{2} e^{3} c^{2}-5 c^{4} d^{4} e b +2 d^{5} c^{5}\right ) \ln \left (c x +b \right )}{c^{4} b^{3}}-\frac {-b^{5} e^{5}+5 b^{4} d \,e^{4} c -10 b^{3} d^{2} e^{3} c^{2}+10 b^{2} c^{3} d^{3} e^{2}-5 c^{4} d^{4} e b +d^{5} c^{5}}{c^{4} b^{2} \left (c x +b \right )}-\frac {d^{5}}{b^{2} x}+\frac {d^{4} \left (5 b e -2 c d \right ) \ln \left (x \right )}{b^{3}}\) \(200\)
norman \(\frac {-\frac {d^{5}}{b}+\frac {e^{5} x^{4}}{2 c}-\frac {e^{4} \left (3 b e -10 c d \right ) x^{3}}{2 c^{2}}-\frac {\left (3 b^{5} e^{5}-10 b^{4} d \,e^{4} c +10 b^{3} d^{2} e^{3} c^{2}-10 b^{2} c^{3} d^{3} e^{2}+5 c^{4} d^{4} e b -2 d^{5} c^{5}\right ) x^{2}}{b^{3} c^{3}}}{x \left (c x +b \right )}+\frac {\left (3 b^{5} e^{5}-10 b^{4} d \,e^{4} c +10 b^{3} d^{2} e^{3} c^{2}-5 c^{4} d^{4} e b +2 d^{5} c^{5}\right ) \ln \left (c x +b \right )}{c^{4} b^{3}}+\frac {d^{4} \left (5 b e -2 c d \right ) \ln \left (x \right )}{b^{3}}\) \(211\)
risch \(\frac {e^{5} x^{2}}{2 c^{2}}-\frac {2 e^{5} b x}{c^{3}}+\frac {5 d \,e^{4} x}{c^{2}}+\frac {\frac {\left (b^{5} e^{5}-5 b^{4} d \,e^{4} c +10 b^{3} d^{2} e^{3} c^{2}-10 b^{2} c^{3} d^{3} e^{2}+5 c^{4} d^{4} e b -2 d^{5} c^{5}\right ) x}{b^{2} c}-\frac {d^{5} c^{3}}{b}}{c^{3} x \left (c x +b \right )}+\frac {5 d^{4} \ln \left (x \right ) e}{b^{2}}-\frac {2 d^{5} \ln \left (x \right ) c}{b^{3}}+\frac {3 b^{2} \ln \left (-c x -b \right ) e^{5}}{c^{4}}-\frac {10 b \ln \left (-c x -b \right ) d \,e^{4}}{c^{3}}+\frac {10 \ln \left (-c x -b \right ) d^{2} e^{3}}{c^{2}}-\frac {5 \ln \left (-c x -b \right ) d^{4} e}{b^{2}}+\frac {2 c \ln \left (-c x -b \right ) d^{5}}{b^{3}}\) \(248\)
parallelrisch \(\frac {4 \ln \left (c x +b \right ) x b \,c^{5} d^{5}+10 x^{3} b^{3} c^{3} d \,e^{4}+20 x^{2} b^{4} c^{2} d \,e^{4}-10 x^{2} b \,c^{5} d^{4} e -20 x^{2} b^{3} c^{3} d^{2} e^{3}+20 x^{2} b^{2} c^{4} d^{3} e^{2}-4 \ln \left (x \right ) x^{2} c^{6} d^{5}-10 \ln \left (c x +b \right ) x^{2} b \,c^{5} d^{4} e +10 \ln \left (x \right ) x \,b^{2} c^{4} d^{4} e -20 \ln \left (c x +b \right ) x \,b^{5} c d \,e^{4}+20 \ln \left (c x +b \right ) x \,b^{4} c^{2} d^{2} e^{3}-10 \ln \left (c x +b \right ) x \,b^{2} c^{4} d^{4} e +6 \ln \left (c x +b \right ) x^{2} b^{5} c \,e^{5}-4 \ln \left (x \right ) x b \,c^{5} d^{5}+10 \ln \left (x \right ) x^{2} b \,c^{5} d^{4} e -20 \ln \left (c x +b \right ) x^{2} b^{4} c^{2} d \,e^{4}+20 \ln \left (c x +b \right ) x^{2} b^{3} c^{3} d^{2} e^{3}+4 \ln \left (c x +b \right ) x^{2} c^{6} d^{5}+6 \ln \left (c x +b \right ) x \,b^{6} e^{5}+x^{4} b^{3} c^{3} e^{5}-3 x^{3} b^{4} c^{2} e^{5}-6 x^{2} b^{5} c \,e^{5}+4 x^{2} c^{6} d^{5}-2 b^{2} c^{4} d^{5}}{2 b^{3} c^{4} x \left (c x +b \right )}\) \(399\)

Input:

int((e*x+d)^5/(c*x^2+b*x)^2,x,method=_RETURNVERBOSE)
 

Output:

-e^4/c^3*(-1/2*c*e*x^2+2*b*e*x-5*c*d*x)+1/c^4*(3*b^5*e^5-10*b^4*c*d*e^4+10 
*b^3*c^2*d^2*e^3-5*b*c^4*d^4*e+2*c^5*d^5)/b^3*ln(c*x+b)-(-b^5*e^5+5*b^4*c* 
d*e^4-10*b^3*c^2*d^2*e^3+10*b^2*c^3*d^3*e^2-5*b*c^4*d^4*e+c^5*d^5)/c^4/b^2 
/(c*x+b)-d^5/b^2/x+d^4*(5*b*e-2*c*d)/b^3*ln(x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 349 vs. \(2 (116) = 232\).

Time = 0.09 (sec) , antiderivative size = 349, normalized size of antiderivative = 2.96 \[ \int \frac {(d+e x)^5}{\left (b x+c x^2\right )^2} \, dx=\frac {b^{3} c^{3} e^{5} x^{4} - 2 \, b^{2} c^{4} d^{5} + {\left (10 \, b^{3} c^{3} d e^{4} - 3 \, b^{4} c^{2} e^{5}\right )} x^{3} + 2 \, {\left (5 \, b^{4} c^{2} d e^{4} - 2 \, b^{5} c e^{5}\right )} x^{2} - 2 \, {\left (2 \, b c^{5} d^{5} - 5 \, b^{2} c^{4} d^{4} e + 10 \, b^{3} c^{3} d^{3} e^{2} - 10 \, b^{4} c^{2} d^{2} e^{3} + 5 \, b^{5} c d e^{4} - b^{6} e^{5}\right )} x + 2 \, {\left ({\left (2 \, c^{6} d^{5} - 5 \, b c^{5} d^{4} e + 10 \, b^{3} c^{3} d^{2} e^{3} - 10 \, b^{4} c^{2} d e^{4} + 3 \, b^{5} c e^{5}\right )} x^{2} + {\left (2 \, b c^{5} d^{5} - 5 \, b^{2} c^{4} d^{4} e + 10 \, b^{4} c^{2} d^{2} e^{3} - 10 \, b^{5} c d e^{4} + 3 \, b^{6} e^{5}\right )} x\right )} \log \left (c x + b\right ) - 2 \, {\left ({\left (2 \, c^{6} d^{5} - 5 \, b c^{5} d^{4} e\right )} x^{2} + {\left (2 \, b c^{5} d^{5} - 5 \, b^{2} c^{4} d^{4} e\right )} x\right )} \log \left (x\right )}{2 \, {\left (b^{3} c^{5} x^{2} + b^{4} c^{4} x\right )}} \] Input:

integrate((e*x+d)^5/(c*x^2+b*x)^2,x, algorithm="fricas")
 

Output:

1/2*(b^3*c^3*e^5*x^4 - 2*b^2*c^4*d^5 + (10*b^3*c^3*d*e^4 - 3*b^4*c^2*e^5)* 
x^3 + 2*(5*b^4*c^2*d*e^4 - 2*b^5*c*e^5)*x^2 - 2*(2*b*c^5*d^5 - 5*b^2*c^4*d 
^4*e + 10*b^3*c^3*d^3*e^2 - 10*b^4*c^2*d^2*e^3 + 5*b^5*c*d*e^4 - b^6*e^5)* 
x + 2*((2*c^6*d^5 - 5*b*c^5*d^4*e + 10*b^3*c^3*d^2*e^3 - 10*b^4*c^2*d*e^4 
+ 3*b^5*c*e^5)*x^2 + (2*b*c^5*d^5 - 5*b^2*c^4*d^4*e + 10*b^4*c^2*d^2*e^3 - 
 10*b^5*c*d*e^4 + 3*b^6*e^5)*x)*log(c*x + b) - 2*((2*c^6*d^5 - 5*b*c^5*d^4 
*e)*x^2 + (2*b*c^5*d^5 - 5*b^2*c^4*d^4*e)*x)*log(x))/(b^3*c^5*x^2 + b^4*c^ 
4*x)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 381 vs. \(2 (110) = 220\).

Time = 1.68 (sec) , antiderivative size = 381, normalized size of antiderivative = 3.23 \[ \int \frac {(d+e x)^5}{\left (b x+c x^2\right )^2} \, dx=x \left (- \frac {2 b e^{5}}{c^{3}} + \frac {5 d e^{4}}{c^{2}}\right ) + \frac {- b c^{4} d^{5} + x \left (b^{5} e^{5} - 5 b^{4} c d e^{4} + 10 b^{3} c^{2} d^{2} e^{3} - 10 b^{2} c^{3} d^{3} e^{2} + 5 b c^{4} d^{4} e - 2 c^{5} d^{5}\right )}{b^{3} c^{4} x + b^{2} c^{5} x^{2}} + \frac {e^{5} x^{2}}{2 c^{2}} + \frac {d^{4} \cdot \left (5 b e - 2 c d\right ) \log {\left (x + \frac {- 5 b^{2} c^{3} d^{4} e + 2 b c^{4} d^{5} + b c^{3} d^{4} \cdot \left (5 b e - 2 c d\right )}{3 b^{5} e^{5} - 10 b^{4} c d e^{4} + 10 b^{3} c^{2} d^{2} e^{3} - 10 b c^{4} d^{4} e + 4 c^{5} d^{5}} \right )}}{b^{3}} + \frac {\left (b e - c d\right )^{4} \cdot \left (3 b e + 2 c d\right ) \log {\left (x + \frac {- 5 b^{2} c^{3} d^{4} e + 2 b c^{4} d^{5} + \frac {b \left (b e - c d\right )^{4} \cdot \left (3 b e + 2 c d\right )}{c}}{3 b^{5} e^{5} - 10 b^{4} c d e^{4} + 10 b^{3} c^{2} d^{2} e^{3} - 10 b c^{4} d^{4} e + 4 c^{5} d^{5}} \right )}}{b^{3} c^{4}} \] Input:

integrate((e*x+d)**5/(c*x**2+b*x)**2,x)
 

Output:

x*(-2*b*e**5/c**3 + 5*d*e**4/c**2) + (-b*c**4*d**5 + x*(b**5*e**5 - 5*b**4 
*c*d*e**4 + 10*b**3*c**2*d**2*e**3 - 10*b**2*c**3*d**3*e**2 + 5*b*c**4*d** 
4*e - 2*c**5*d**5))/(b**3*c**4*x + b**2*c**5*x**2) + e**5*x**2/(2*c**2) + 
d**4*(5*b*e - 2*c*d)*log(x + (-5*b**2*c**3*d**4*e + 2*b*c**4*d**5 + b*c**3 
*d**4*(5*b*e - 2*c*d))/(3*b**5*e**5 - 10*b**4*c*d*e**4 + 10*b**3*c**2*d**2 
*e**3 - 10*b*c**4*d**4*e + 4*c**5*d**5))/b**3 + (b*e - c*d)**4*(3*b*e + 2* 
c*d)*log(x + (-5*b**2*c**3*d**4*e + 2*b*c**4*d**5 + b*(b*e - c*d)**4*(3*b* 
e + 2*c*d)/c)/(3*b**5*e**5 - 10*b**4*c*d*e**4 + 10*b**3*c**2*d**2*e**3 - 1 
0*b*c**4*d**4*e + 4*c**5*d**5))/(b**3*c**4)
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.83 \[ \int \frac {(d+e x)^5}{\left (b x+c x^2\right )^2} \, dx=-\frac {b c^{4} d^{5} + {\left (2 \, c^{5} d^{5} - 5 \, b c^{4} d^{4} e + 10 \, b^{2} c^{3} d^{3} e^{2} - 10 \, b^{3} c^{2} d^{2} e^{3} + 5 \, b^{4} c d e^{4} - b^{5} e^{5}\right )} x}{b^{2} c^{5} x^{2} + b^{3} c^{4} x} - \frac {{\left (2 \, c d^{5} - 5 \, b d^{4} e\right )} \log \left (x\right )}{b^{3}} + \frac {c e^{5} x^{2} + 2 \, {\left (5 \, c d e^{4} - 2 \, b e^{5}\right )} x}{2 \, c^{3}} + \frac {{\left (2 \, c^{5} d^{5} - 5 \, b c^{4} d^{4} e + 10 \, b^{3} c^{2} d^{2} e^{3} - 10 \, b^{4} c d e^{4} + 3 \, b^{5} e^{5}\right )} \log \left (c x + b\right )}{b^{3} c^{4}} \] Input:

integrate((e*x+d)^5/(c*x^2+b*x)^2,x, algorithm="maxima")
 

Output:

-(b*c^4*d^5 + (2*c^5*d^5 - 5*b*c^4*d^4*e + 10*b^2*c^3*d^3*e^2 - 10*b^3*c^2 
*d^2*e^3 + 5*b^4*c*d*e^4 - b^5*e^5)*x)/(b^2*c^5*x^2 + b^3*c^4*x) - (2*c*d^ 
5 - 5*b*d^4*e)*log(x)/b^3 + 1/2*(c*e^5*x^2 + 2*(5*c*d*e^4 - 2*b*e^5)*x)/c^ 
3 + (2*c^5*d^5 - 5*b*c^4*d^4*e + 10*b^3*c^2*d^2*e^3 - 10*b^4*c*d*e^4 + 3*b 
^5*e^5)*log(c*x + b)/(b^3*c^4)
 

Giac [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.83 \[ \int \frac {(d+e x)^5}{\left (b x+c x^2\right )^2} \, dx=-\frac {{\left (2 \, c d^{5} - 5 \, b d^{4} e\right )} \log \left ({\left | x \right |}\right )}{b^{3}} + \frac {c^{2} e^{5} x^{2} + 10 \, c^{2} d e^{4} x - 4 \, b c e^{5} x}{2 \, c^{4}} + \frac {{\left (2 \, c^{5} d^{5} - 5 \, b c^{4} d^{4} e + 10 \, b^{3} c^{2} d^{2} e^{3} - 10 \, b^{4} c d e^{4} + 3 \, b^{5} e^{5}\right )} \log \left ({\left | c x + b \right |}\right )}{b^{3} c^{4}} - \frac {b c^{4} d^{5} + {\left (2 \, c^{5} d^{5} - 5 \, b c^{4} d^{4} e + 10 \, b^{2} c^{3} d^{3} e^{2} - 10 \, b^{3} c^{2} d^{2} e^{3} + 5 \, b^{4} c d e^{4} - b^{5} e^{5}\right )} x}{{\left (c x + b\right )} b^{2} c^{4} x} \] Input:

integrate((e*x+d)^5/(c*x^2+b*x)^2,x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

-(2*c*d^5 - 5*b*d^4*e)*log(abs(x))/b^3 + 1/2*(c^2*e^5*x^2 + 10*c^2*d*e^4*x 
 - 4*b*c*e^5*x)/c^4 + (2*c^5*d^5 - 5*b*c^4*d^4*e + 10*b^3*c^2*d^2*e^3 - 10 
*b^4*c*d*e^4 + 3*b^5*e^5)*log(abs(c*x + b))/(b^3*c^4) - (b*c^4*d^5 + (2*c^ 
5*d^5 - 5*b*c^4*d^4*e + 10*b^2*c^3*d^3*e^2 - 10*b^3*c^2*d^2*e^3 + 5*b^4*c* 
d*e^4 - b^5*e^5)*x)/((c*x + b)*b^2*c^4*x)
 

Mupad [B] (verification not implemented)

Time = 8.97 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.85 \[ \int \frac {(d+e x)^5}{\left (b x+c x^2\right )^2} \, dx=\frac {e^5\,x^2}{2\,c^2}-\frac {\frac {c^3\,d^5}{b}-\frac {x\,\left (b^5\,e^5-5\,b^4\,c\,d\,e^4+10\,b^3\,c^2\,d^2\,e^3-10\,b^2\,c^3\,d^3\,e^2+5\,b\,c^4\,d^4\,e-2\,c^5\,d^5\right )}{b^2\,c}}{c^4\,x^2+b\,c^3\,x}-x\,\left (\frac {2\,b\,e^5}{c^3}-\frac {5\,d\,e^4}{c^2}\right )+\frac {\ln \left (b+c\,x\right )\,\left (3\,b^5\,e^5-10\,b^4\,c\,d\,e^4+10\,b^3\,c^2\,d^2\,e^3-5\,b\,c^4\,d^4\,e+2\,c^5\,d^5\right )}{b^3\,c^4}+\frac {d^4\,\ln \left (x\right )\,\left (5\,b\,e-2\,c\,d\right )}{b^3} \] Input:

int((d + e*x)^5/(b*x + c*x^2)^2,x)
 

Output:

(e^5*x^2)/(2*c^2) - ((c^3*d^5)/b - (x*(b^5*e^5 - 2*c^5*d^5 - 10*b^2*c^3*d^ 
3*e^2 + 10*b^3*c^2*d^2*e^3 + 5*b*c^4*d^4*e - 5*b^4*c*d*e^4))/(b^2*c))/(c^4 
*x^2 + b*c^3*x) - x*((2*b*e^5)/c^3 - (5*d*e^4)/c^2) + (log(b + c*x)*(3*b^5 
*e^5 + 2*c^5*d^5 + 10*b^3*c^2*d^2*e^3 - 5*b*c^4*d^4*e - 10*b^4*c*d*e^4))/( 
b^3*c^4) + (d^4*log(x)*(5*b*e - 2*c*d))/b^3
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 398, normalized size of antiderivative = 3.37 \[ \int \frac {(d+e x)^5}{\left (b x+c x^2\right )^2} \, dx=\frac {6 \,\mathrm {log}\left (c x +b \right ) b^{6} e^{5} x -20 \,\mathrm {log}\left (c x +b \right ) b^{5} c d \,e^{4} x +6 \,\mathrm {log}\left (c x +b \right ) b^{5} c \,e^{5} x^{2}+20 \,\mathrm {log}\left (c x +b \right ) b^{4} c^{2} d^{2} e^{3} x -20 \,\mathrm {log}\left (c x +b \right ) b^{4} c^{2} d \,e^{4} x^{2}+20 \,\mathrm {log}\left (c x +b \right ) b^{3} c^{3} d^{2} e^{3} x^{2}-10 \,\mathrm {log}\left (c x +b \right ) b^{2} c^{4} d^{4} e x +4 \,\mathrm {log}\left (c x +b \right ) b \,c^{5} d^{5} x -10 \,\mathrm {log}\left (c x +b \right ) b \,c^{5} d^{4} e \,x^{2}+4 \,\mathrm {log}\left (c x +b \right ) c^{6} d^{5} x^{2}+10 \,\mathrm {log}\left (x \right ) b^{2} c^{4} d^{4} e x -4 \,\mathrm {log}\left (x \right ) b \,c^{5} d^{5} x +10 \,\mathrm {log}\left (x \right ) b \,c^{5} d^{4} e \,x^{2}-4 \,\mathrm {log}\left (x \right ) c^{6} d^{5} x^{2}-6 b^{5} c \,e^{5} x^{2}+20 b^{4} c^{2} d \,e^{4} x^{2}-3 b^{4} c^{2} e^{5} x^{3}-20 b^{3} c^{3} d^{2} e^{3} x^{2}+10 b^{3} c^{3} d \,e^{4} x^{3}+b^{3} c^{3} e^{5} x^{4}-2 b^{2} c^{4} d^{5}+20 b^{2} c^{4} d^{3} e^{2} x^{2}-10 b \,c^{5} d^{4} e \,x^{2}+4 c^{6} d^{5} x^{2}}{2 b^{3} c^{4} x \left (c x +b \right )} \] Input:

int((e*x+d)^5/(c*x^2+b*x)^2,x)
 

Output:

(6*log(b + c*x)*b**6*e**5*x - 20*log(b + c*x)*b**5*c*d*e**4*x + 6*log(b + 
c*x)*b**5*c*e**5*x**2 + 20*log(b + c*x)*b**4*c**2*d**2*e**3*x - 20*log(b + 
 c*x)*b**4*c**2*d*e**4*x**2 + 20*log(b + c*x)*b**3*c**3*d**2*e**3*x**2 - 1 
0*log(b + c*x)*b**2*c**4*d**4*e*x + 4*log(b + c*x)*b*c**5*d**5*x - 10*log( 
b + c*x)*b*c**5*d**4*e*x**2 + 4*log(b + c*x)*c**6*d**5*x**2 + 10*log(x)*b* 
*2*c**4*d**4*e*x - 4*log(x)*b*c**5*d**5*x + 10*log(x)*b*c**5*d**4*e*x**2 - 
 4*log(x)*c**6*d**5*x**2 - 6*b**5*c*e**5*x**2 + 20*b**4*c**2*d*e**4*x**2 - 
 3*b**4*c**2*e**5*x**3 - 20*b**3*c**3*d**2*e**3*x**2 + 10*b**3*c**3*d*e**4 
*x**3 + b**3*c**3*e**5*x**4 - 2*b**2*c**4*d**5 + 20*b**2*c**4*d**3*e**2*x* 
*2 - 10*b*c**5*d**4*e*x**2 + 4*c**6*d**5*x**2)/(2*b**3*c**4*x*(b + c*x))