\(\int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^2} \, dx\) [115]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 325 \[ \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^2} \, dx=\frac {12 a^{3/2} \left (b+a x^{2/3}\right ) \sqrt [3]{x}}{5 b \left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right ) \sqrt {b \sqrt [3]{x}+a x}}-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{5 x}-\frac {12 a \sqrt {b \sqrt [3]{x}+a x}}{5 b \sqrt [3]{x}}-\frac {12 a^{5/4} \left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right ) \sqrt {\frac {b+a x^{2/3}}{\left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} E\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{5 b^{3/4} \sqrt {b \sqrt [3]{x}+a x}}+\frac {6 a^{5/4} \left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right ) \sqrt {\frac {b+a x^{2/3}}{\left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{5 b^{3/4} \sqrt {b \sqrt [3]{x}+a x}} \] Output:

12/5*a^(3/2)*(b+a*x^(2/3))*x^(1/3)/b/(b^(1/2)+a^(1/2)*x^(1/3))/(b*x^(1/3)+ 
a*x)^(1/2)-6/5*(b*x^(1/3)+a*x)^(1/2)/x-12/5*a*(b*x^(1/3)+a*x)^(1/2)/b/x^(1 
/3)-12/5*a^(5/4)*(b^(1/2)+a^(1/2)*x^(1/3))*((b+a*x^(2/3))/(b^(1/2)+a^(1/2) 
*x^(1/3))^2)^(1/2)*x^(1/6)*EllipticE(sin(2*arctan(a^(1/4)*x^(1/6)/b^(1/4)) 
),1/2*2^(1/2))/b^(3/4)/(b*x^(1/3)+a*x)^(1/2)+6/5*a^(5/4)*(b^(1/2)+a^(1/2)* 
x^(1/3))*((b+a*x^(2/3))/(b^(1/2)+a^(1/2)*x^(1/3))^2)^(1/2)*x^(1/6)*Inverse 
JacobiAM(2*arctan(a^(1/4)*x^(1/6)/b^(1/4)),1/2*2^(1/2))/b^(3/4)/(b*x^(1/3) 
+a*x)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.18 \[ \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^2} \, dx=-\frac {6 \sqrt {b \sqrt [3]{x}+a x} \operatorname {Hypergeometric2F1}\left (-\frac {5}{4},-\frac {1}{2},-\frac {1}{4},-\frac {a x^{2/3}}{b}\right )}{5 \sqrt {1+\frac {a x^{2/3}}{b}} x} \] Input:

Integrate[Sqrt[b*x^(1/3) + a*x]/x^2,x]
 

Output:

(-6*Sqrt[b*x^(1/3) + a*x]*Hypergeometric2F1[-5/4, -1/2, -1/4, -((a*x^(2/3) 
)/b)])/(5*Sqrt[1 + (a*x^(2/3))/b]*x)
 

Rubi [A] (warning: unable to verify)

Time = 0.75 (sec) , antiderivative size = 340, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {1924, 1926, 1931, 1938, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a x+b \sqrt [3]{x}}}{x^2} \, dx\)

\(\Big \downarrow \) 1924

\(\displaystyle 3 \int \frac {\sqrt {\sqrt [3]{x} b+a x}}{x^{4/3}}d\sqrt [3]{x}\)

\(\Big \downarrow \) 1926

\(\displaystyle 3 \left (\frac {2}{5} a \int \frac {1}{\sqrt [3]{x} \sqrt {\sqrt [3]{x} b+a x}}d\sqrt [3]{x}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{5 x}\right )\)

\(\Big \downarrow \) 1931

\(\displaystyle 3 \left (\frac {2}{5} a \left (\frac {a \int \frac {\sqrt [3]{x}}{\sqrt {\sqrt [3]{x} b+a x}}d\sqrt [3]{x}}{b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{b \sqrt [3]{x}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{5 x}\right )\)

\(\Big \downarrow \) 1938

\(\displaystyle 3 \left (\frac {2}{5} a \left (\frac {a \sqrt [6]{x} \sqrt {a x^{2/3}+b} \int \frac {\sqrt [6]{x}}{\sqrt {x^{2/3} a+b}}d\sqrt [3]{x}}{b \sqrt {a x+b \sqrt [3]{x}}}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{b \sqrt [3]{x}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{5 x}\right )\)

\(\Big \downarrow \) 266

\(\displaystyle 3 \left (\frac {2}{5} a \left (\frac {2 a \sqrt [6]{x} \sqrt {a x^{2/3}+b} \int \frac {x^{2/3}}{\sqrt {a x^{4/3}+b}}d\sqrt [6]{x}}{b \sqrt {a x+b \sqrt [3]{x}}}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{b \sqrt [3]{x}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{5 x}\right )\)

\(\Big \downarrow \) 834

\(\displaystyle 3 \left (\frac {2}{5} a \left (\frac {2 a \sqrt [6]{x} \sqrt {a x^{2/3}+b} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {a x^{4/3}+b}}d\sqrt [6]{x}}{\sqrt {a}}-\frac {\sqrt {b} \int \frac {\sqrt {b}-\sqrt {a} x^{2/3}}{\sqrt {b} \sqrt {a x^{4/3}+b}}d\sqrt [6]{x}}{\sqrt {a}}\right )}{b \sqrt {a x+b \sqrt [3]{x}}}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{b \sqrt [3]{x}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{5 x}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 3 \left (\frac {2}{5} a \left (\frac {2 a \sqrt [6]{x} \sqrt {a x^{2/3}+b} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {a x^{4/3}+b}}d\sqrt [6]{x}}{\sqrt {a}}-\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{2/3}}{\sqrt {a x^{4/3}+b}}d\sqrt [6]{x}}{\sqrt {a}}\right )}{b \sqrt {a x+b \sqrt [3]{x}}}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{b \sqrt [3]{x}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{5 x}\right )\)

\(\Big \downarrow \) 761

\(\displaystyle 3 \left (\frac {2}{5} a \left (\frac {2 a \sqrt [6]{x} \sqrt {a x^{2/3}+b} \left (\frac {\sqrt [4]{b} \left (\sqrt {a} x^{2/3}+\sqrt {b}\right ) \sqrt {\frac {a x^{4/3}+b}{\left (\sqrt {a} x^{2/3}+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 a^{3/4} \sqrt {a x^{4/3}+b}}-\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{2/3}}{\sqrt {a x^{4/3}+b}}d\sqrt [6]{x}}{\sqrt {a}}\right )}{b \sqrt {a x+b \sqrt [3]{x}}}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{b \sqrt [3]{x}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{5 x}\right )\)

\(\Big \downarrow \) 1510

\(\displaystyle 3 \left (\frac {2}{5} a \left (\frac {2 a \sqrt [6]{x} \sqrt {a x^{2/3}+b} \left (\frac {\sqrt [4]{b} \left (\sqrt {a} x^{2/3}+\sqrt {b}\right ) \sqrt {\frac {a x^{4/3}+b}{\left (\sqrt {a} x^{2/3}+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 a^{3/4} \sqrt {a x^{4/3}+b}}-\frac {\frac {\sqrt [4]{b} \left (\sqrt {a} x^{2/3}+\sqrt {b}\right ) \sqrt {\frac {a x^{4/3}+b}{\left (\sqrt {a} x^{2/3}+\sqrt {b}\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt [4]{a} \sqrt {a x^{4/3}+b}}-\frac {\sqrt [6]{x} \sqrt {a x^{4/3}+b}}{\sqrt {a} x^{2/3}+\sqrt {b}}}{\sqrt {a}}\right )}{b \sqrt {a x+b \sqrt [3]{x}}}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{b \sqrt [3]{x}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{5 x}\right )\)

Input:

Int[Sqrt[b*x^(1/3) + a*x]/x^2,x]
 

Output:

3*((-2*Sqrt[b*x^(1/3) + a*x])/(5*x) + (2*a*((-2*Sqrt[b*x^(1/3) + a*x])/(b* 
x^(1/3)) + (2*a*Sqrt[b + a*x^(2/3)]*x^(1/6)*(-((-((x^(1/6)*Sqrt[b + a*x^(4 
/3)])/(Sqrt[b] + Sqrt[a]*x^(2/3))) + (b^(1/4)*(Sqrt[b] + Sqrt[a]*x^(2/3))* 
Sqrt[(b + a*x^(4/3))/(Sqrt[b] + Sqrt[a]*x^(2/3))^2]*EllipticE[2*ArcTan[(a^ 
(1/4)*x^(1/6))/b^(1/4)], 1/2])/(a^(1/4)*Sqrt[b + a*x^(4/3)]))/Sqrt[a]) + ( 
b^(1/4)*(Sqrt[b] + Sqrt[a]*x^(2/3))*Sqrt[(b + a*x^(4/3))/(Sqrt[b] + Sqrt[a 
]*x^(2/3))^2]*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(2*a^(3 
/4)*Sqrt[b + a*x^(4/3)])))/(b*Sqrt[b*x^(1/3) + a*x])))/5)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1924
Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp 
[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x 
], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j 
] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1 
]
 

rule 1926
Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] 
 :> Simp[(c*x)^(m + 1)*((a*x^j + b*x^n)^p/(c*(m + j*p + 1))), x] - Simp[b*p 
*((n - j)/(c^n*(m + j*p + 1)))   Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p - 1), 
 x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (Integer 
sQ[j, n] || GtQ[c, 0]) && GtQ[p, 0] && LtQ[m + j*p + 1, 0]
 

rule 1931
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^(j - 1)*(c*x)^(m - j + 1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p 
+ 1))), x] - Simp[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1)))   I 
nt[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] 
 &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[ 
m + j*p + 1, 0]
 

rule 1938
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^IntPart[m]*(c*x)^FracPart[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(F 
racPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]))   Int[x^(m + j* 
p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !Inte 
gerQ[p] && NeQ[n, j] && PosQ[n - j]
 
Maple [A] (verified)

Time = 0.62 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.66

method result size
derivativedivides \(-\frac {6 \sqrt {b \,x^{\frac {1}{3}}+a x}}{5 x}-\frac {12 \left (b +a \,x^{\frac {2}{3}}\right ) a}{5 b \sqrt {x^{\frac {1}{3}} \left (b +a \,x^{\frac {2}{3}}\right )}}+\frac {6 a \sqrt {-a b}\, \sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x^{\frac {1}{3}}-\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {x^{\frac {1}{3}} a}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{a}+\frac {\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{a}\right )}{5 b \sqrt {b \,x^{\frac {1}{3}}+a x}}\) \(213\)
default \(-\frac {6 \sqrt {b \,x^{\frac {1}{3}}+a x}}{5 x}-\frac {12 \left (b +a \,x^{\frac {2}{3}}\right ) a}{5 b \sqrt {x^{\frac {1}{3}} \left (b +a \,x^{\frac {2}{3}}\right )}}+\frac {6 a \sqrt {-a b}\, \sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x^{\frac {1}{3}}-\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {x^{\frac {1}{3}} a}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{a}+\frac {\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{a}\right )}{5 b \sqrt {b \,x^{\frac {1}{3}}+a x}}\) \(213\)

Input:

int((b*x^(1/3)+a*x)^(1/2)/x^2,x,method=_RETURNVERBOSE)
 

Output:

-6/5*(b*x^(1/3)+a*x)^(1/2)/x-12/5*(b+a*x^(2/3))*a/b/(x^(1/3)*(b+a*x^(2/3)) 
)^(1/2)+6/5*a/b*(-a*b)^(1/2)*((x^(1/3)+1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^( 
1/2)*(-2*(x^(1/3)-1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^(1/2)*(-x^(1/3)/(-a*b) 
^(1/2)*a)^(1/2)/(b*x^(1/3)+a*x)^(1/2)*(-2/a*(-a*b)^(1/2)*EllipticE(((x^(1/ 
3)+1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))+1/a*(-a*b)^(1/2)*E 
llipticF(((x^(1/3)+1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^(1/2),1/2*2^(1/2)))
 

Fricas [F]

\[ \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^2} \, dx=\int { \frac {\sqrt {a x + b x^{\frac {1}{3}}}}{x^{2}} \,d x } \] Input:

integrate((b*x^(1/3)+a*x)^(1/2)/x^2,x, algorithm="fricas")
 

Output:

integral(sqrt(a*x + b*x^(1/3))/x^2, x)
 

Sympy [F]

\[ \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^2} \, dx=\int \frac {\sqrt {a x + b \sqrt [3]{x}}}{x^{2}}\, dx \] Input:

integrate((b*x**(1/3)+a*x)**(1/2)/x**2,x)
 

Output:

Integral(sqrt(a*x + b*x**(1/3))/x**2, x)
 

Maxima [F]

\[ \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^2} \, dx=\int { \frac {\sqrt {a x + b x^{\frac {1}{3}}}}{x^{2}} \,d x } \] Input:

integrate((b*x^(1/3)+a*x)^(1/2)/x^2,x, algorithm="maxima")
 

Output:

integrate(sqrt(a*x + b*x^(1/3))/x^2, x)
 

Giac [F]

\[ \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^2} \, dx=\int { \frac {\sqrt {a x + b x^{\frac {1}{3}}}}{x^{2}} \,d x } \] Input:

integrate((b*x^(1/3)+a*x)^(1/2)/x^2,x, algorithm="giac")
 

Output:

integrate(sqrt(a*x + b*x^(1/3))/x^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^2} \, dx=\int \frac {\sqrt {a\,x+b\,x^{1/3}}}{x^2} \,d x \] Input:

int((a*x + b*x^(1/3))^(1/2)/x^2,x)
 

Output:

int((a*x + b*x^(1/3))^(1/2)/x^2, x)
 

Reduce [F]

\[ \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^2} \, dx=\frac {-2 \sqrt {x^{\frac {2}{3}} a +b}-\frac {2 x^{\frac {5}{6}} \left (\int \frac {\sqrt {x^{\frac {2}{3}} a +b}}{x^{\frac {11}{6}} b +\sqrt {x}\, a \,x^{2}}d x \right ) b}{3}}{x^{\frac {5}{6}}} \] Input:

int((b*x^(1/3)+a*x)^(1/2)/x^2,x)
 

Output:

(2*( - 3*sqrt(x**(2/3)*a + b) - x**(5/6)*int(sqrt(x**(2/3)*a + b)/(x**(5/6 
)*b*x + sqrt(x)*a*x**2),x)*b))/(3*x**(5/6))