\(\int \frac {(b \sqrt [3]{x}+a x)^{3/2}}{x^6} \, dx\) [127]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 301 \[ \int \frac {\left (b \sqrt [3]{x}+a x\right )^{3/2}}{x^6} \, dx=-\frac {4 a \sqrt {b \sqrt [3]{x}+a x}}{69 x^4}-\frac {8 a^2 \sqrt {b \sqrt [3]{x}+a x}}{1311 b x^{10/3}}+\frac {136 a^3 \sqrt {b \sqrt [3]{x}+a x}}{19665 b^2 x^{8/3}}-\frac {1768 a^4 \sqrt {b \sqrt [3]{x}+a x}}{216315 b^3 x^2}+\frac {1768 a^5 \sqrt {b \sqrt [3]{x}+a x}}{168245 b^4 x^{4/3}}-\frac {1768 a^6 \sqrt {b \sqrt [3]{x}+a x}}{100947 b^5 x^{2/3}}-\frac {2 \left (b \sqrt [3]{x}+a x\right )^{3/2}}{9 x^5}-\frac {884 a^{27/4} \left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right ) \sqrt {\frac {b+a x^{2/3}}{\left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{100947 b^{21/4} \sqrt {b \sqrt [3]{x}+a x}} \] Output:

-4/69*a*(b*x^(1/3)+a*x)^(1/2)/x^4-8/1311*a^2*(b*x^(1/3)+a*x)^(1/2)/b/x^(10 
/3)+136/19665*a^3*(b*x^(1/3)+a*x)^(1/2)/b^2/x^(8/3)-1768/216315*a^4*(b*x^( 
1/3)+a*x)^(1/2)/b^3/x^2+1768/168245*a^5*(b*x^(1/3)+a*x)^(1/2)/b^4/x^(4/3)- 
1768/100947*a^6*(b*x^(1/3)+a*x)^(1/2)/b^5/x^(2/3)-2/9*(b*x^(1/3)+a*x)^(3/2 
)/x^5-884/100947*a^(27/4)*(b^(1/2)+a^(1/2)*x^(1/3))*((b+a*x^(2/3))/(b^(1/2 
)+a^(1/2)*x^(1/3))^2)^(1/2)*x^(1/6)*InverseJacobiAM(2*arctan(a^(1/4)*x^(1/ 
6)/b^(1/4)),1/2*2^(1/2))/b^(21/4)/(b*x^(1/3)+a*x)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.05 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.21 \[ \int \frac {\left (b \sqrt [3]{x}+a x\right )^{3/2}}{x^6} \, dx=-\frac {2 b \sqrt {b \sqrt [3]{x}+a x} \operatorname {Hypergeometric2F1}\left (-\frac {27}{4},-\frac {3}{2},-\frac {23}{4},-\frac {a x^{2/3}}{b}\right )}{9 \sqrt {1+\frac {a x^{2/3}}{b}} x^{14/3}} \] Input:

Integrate[(b*x^(1/3) + a*x)^(3/2)/x^6,x]
 

Output:

(-2*b*Sqrt[b*x^(1/3) + a*x]*Hypergeometric2F1[-27/4, -3/2, -23/4, -((a*x^( 
2/3))/b)])/(9*Sqrt[1 + (a*x^(2/3))/b]*x^(14/3))
 

Rubi [A] (warning: unable to verify)

Time = 1.04 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.20, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.579, Rules used = {1924, 1926, 1926, 1931, 1931, 1931, 1931, 1931, 1917, 266, 761}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a x+b \sqrt [3]{x}\right )^{3/2}}{x^6} \, dx\)

\(\Big \downarrow \) 1924

\(\displaystyle 3 \int \frac {\left (\sqrt [3]{x} b+a x\right )^{3/2}}{x^{16/3}}d\sqrt [3]{x}\)

\(\Big \downarrow \) 1926

\(\displaystyle 3 \left (\frac {2}{9} a \int \frac {\sqrt {\sqrt [3]{x} b+a x}}{x^{13/3}}d\sqrt [3]{x}-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

\(\Big \downarrow \) 1926

\(\displaystyle 3 \left (\frac {2}{9} a \left (\frac {2}{23} a \int \frac {1}{x^{10/3} \sqrt {\sqrt [3]{x} b+a x}}d\sqrt [3]{x}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4}\right )-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

\(\Big \downarrow \) 1931

\(\displaystyle 3 \left (\frac {2}{9} a \left (\frac {2}{23} a \left (-\frac {17 a \int \frac {1}{x^{8/3} \sqrt {\sqrt [3]{x} b+a x}}d\sqrt [3]{x}}{19 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{19 b x^{10/3}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4}\right )-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

\(\Big \downarrow \) 1931

\(\displaystyle 3 \left (\frac {2}{9} a \left (\frac {2}{23} a \left (-\frac {17 a \left (-\frac {13 a \int \frac {1}{x^2 \sqrt {\sqrt [3]{x} b+a x}}d\sqrt [3]{x}}{15 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{15 b x^{8/3}}\right )}{19 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{19 b x^{10/3}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4}\right )-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

\(\Big \downarrow \) 1931

\(\displaystyle 3 \left (\frac {2}{9} a \left (\frac {2}{23} a \left (-\frac {17 a \left (-\frac {13 a \left (-\frac {9 a \int \frac {1}{x^{4/3} \sqrt {\sqrt [3]{x} b+a x}}d\sqrt [3]{x}}{11 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{11 b x^2}\right )}{15 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{15 b x^{8/3}}\right )}{19 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{19 b x^{10/3}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4}\right )-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

\(\Big \downarrow \) 1931

\(\displaystyle 3 \left (\frac {2}{9} a \left (\frac {2}{23} a \left (-\frac {17 a \left (-\frac {13 a \left (-\frac {9 a \left (-\frac {5 a \int \frac {1}{x^{2/3} \sqrt {\sqrt [3]{x} b+a x}}d\sqrt [3]{x}}{7 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{7 b x^{4/3}}\right )}{11 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{11 b x^2}\right )}{15 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{15 b x^{8/3}}\right )}{19 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{19 b x^{10/3}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4}\right )-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

\(\Big \downarrow \) 1931

\(\displaystyle 3 \left (\frac {2}{9} a \left (\frac {2}{23} a \left (-\frac {17 a \left (-\frac {13 a \left (-\frac {9 a \left (-\frac {5 a \left (-\frac {a \int \frac {1}{\sqrt {\sqrt [3]{x} b+a x}}d\sqrt [3]{x}}{3 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{3 b x^{2/3}}\right )}{7 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{7 b x^{4/3}}\right )}{11 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{11 b x^2}\right )}{15 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{15 b x^{8/3}}\right )}{19 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{19 b x^{10/3}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4}\right )-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

\(\Big \downarrow \) 1917

\(\displaystyle 3 \left (\frac {2}{9} a \left (\frac {2}{23} a \left (-\frac {17 a \left (-\frac {13 a \left (-\frac {9 a \left (-\frac {5 a \left (-\frac {a \sqrt [6]{x} \sqrt {a x^{2/3}+b} \int \frac {1}{\sqrt {x^{2/3} a+b} \sqrt [6]{x}}d\sqrt [3]{x}}{3 b \sqrt {a x+b \sqrt [3]{x}}}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{3 b x^{2/3}}\right )}{7 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{7 b x^{4/3}}\right )}{11 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{11 b x^2}\right )}{15 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{15 b x^{8/3}}\right )}{19 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{19 b x^{10/3}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4}\right )-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

\(\Big \downarrow \) 266

\(\displaystyle 3 \left (\frac {2}{9} a \left (\frac {2}{23} a \left (-\frac {17 a \left (-\frac {13 a \left (-\frac {9 a \left (-\frac {5 a \left (-\frac {2 a \sqrt [6]{x} \sqrt {a x^{2/3}+b} \int \frac {1}{\sqrt {a x^{4/3}+b}}d\sqrt [6]{x}}{3 b \sqrt {a x+b \sqrt [3]{x}}}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{3 b x^{2/3}}\right )}{7 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{7 b x^{4/3}}\right )}{11 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{11 b x^2}\right )}{15 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{15 b x^{8/3}}\right )}{19 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{19 b x^{10/3}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4}\right )-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

\(\Big \downarrow \) 761

\(\displaystyle 3 \left (\frac {2}{9} a \left (\frac {2}{23} a \left (-\frac {17 a \left (-\frac {13 a \left (-\frac {9 a \left (-\frac {5 a \left (-\frac {a^{3/4} \sqrt [6]{x} \left (\sqrt {a} x^{2/3}+\sqrt {b}\right ) \sqrt {a x^{2/3}+b} \sqrt {\frac {a x^{4/3}+b}{\left (\sqrt {a} x^{2/3}+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{3 b^{5/4} \sqrt {a x+b \sqrt [3]{x}} \sqrt {a x^{4/3}+b}}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{3 b x^{2/3}}\right )}{7 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{7 b x^{4/3}}\right )}{11 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{11 b x^2}\right )}{15 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{15 b x^{8/3}}\right )}{19 b}-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{19 b x^{10/3}}\right )-\frac {2 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4}\right )-\frac {2 \left (a x+b \sqrt [3]{x}\right )^{3/2}}{27 x^5}\right )\)

Input:

Int[(b*x^(1/3) + a*x)^(3/2)/x^6,x]
 

Output:

3*((-2*(b*x^(1/3) + a*x)^(3/2))/(27*x^5) + (2*a*((-2*Sqrt[b*x^(1/3) + a*x] 
)/(23*x^4) + (2*a*((-2*Sqrt[b*x^(1/3) + a*x])/(19*b*x^(10/3)) - (17*a*((-2 
*Sqrt[b*x^(1/3) + a*x])/(15*b*x^(8/3)) - (13*a*((-2*Sqrt[b*x^(1/3) + a*x]) 
/(11*b*x^2) - (9*a*((-2*Sqrt[b*x^(1/3) + a*x])/(7*b*x^(4/3)) - (5*a*((-2*S 
qrt[b*x^(1/3) + a*x])/(3*b*x^(2/3)) - (a^(3/4)*(Sqrt[b] + Sqrt[a]*x^(2/3)) 
*Sqrt[b + a*x^(2/3)]*x^(1/6)*Sqrt[(b + a*x^(4/3))/(Sqrt[b] + Sqrt[a]*x^(2/ 
3))^2]*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(3*b^(5/4)*Sqr 
t[b*x^(1/3) + a*x]*Sqrt[b + a*x^(4/3)])))/(7*b)))/(11*b)))/(15*b)))/(19*b) 
))/23))/9)
 

Defintions of rubi rules used

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1917
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a*x^j + 
b*x^n)^FracPart[p]/(x^(j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])   Int[ 
x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !Integ 
erQ[p] && NeQ[n, j] && PosQ[n - j]
 

rule 1924
Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp 
[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x 
], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j 
] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1 
]
 

rule 1926
Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] 
 :> Simp[(c*x)^(m + 1)*((a*x^j + b*x^n)^p/(c*(m + j*p + 1))), x] - Simp[b*p 
*((n - j)/(c^n*(m + j*p + 1)))   Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p - 1), 
 x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (Integer 
sQ[j, n] || GtQ[c, 0]) && GtQ[p, 0] && LtQ[m + j*p + 1, 0]
 

rule 1931
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^(j - 1)*(c*x)^(m - j + 1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p 
+ 1))), x] - Simp[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1)))   I 
nt[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] 
 &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[ 
m + j*p + 1, 0]
 
Maple [A] (verified)

Time = 5.45 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.67

method result size
default \(-\frac {2 \left (6630 a^{6} \sqrt {-a b}\, \sqrt {\frac {x^{\frac {1}{3}} a +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x^{\frac {1}{3}} a -\sqrt {-a b}\right )}{\sqrt {-a b}}}\, \sqrt {-\frac {x^{\frac {1}{3}} a}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x^{\frac {1}{3}} a +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) x^{\frac {26}{3}}-1768 x^{\frac {23}{3}} a^{5} b^{2}+5304 x^{\frac {25}{3}} a^{6} b +952 a^{4} b^{3} x^{7}+216755 x^{\frac {17}{3}} a^{2} b^{5}-616 x^{\frac {19}{3}} a^{3} b^{4}+380380 a \,b^{6} x^{5}+13260 a^{7} x^{9}+168245 x^{\frac {13}{3}} b^{7}\right )}{1514205 b^{5} \sqrt {x^{\frac {1}{3}} \left (b +a \,x^{\frac {2}{3}}\right )}\, x^{\frac {26}{3}}}\) \(201\)
derivativedivides \(-\frac {2 b \sqrt {b \,x^{\frac {1}{3}}+a x}}{9 x^{\frac {14}{3}}}-\frac {58 a \sqrt {b \,x^{\frac {1}{3}}+a x}}{207 x^{4}}-\frac {8 a^{2} \sqrt {b \,x^{\frac {1}{3}}+a x}}{1311 b \,x^{\frac {10}{3}}}+\frac {136 a^{3} \sqrt {b \,x^{\frac {1}{3}}+a x}}{19665 b^{2} x^{\frac {8}{3}}}-\frac {1768 a^{4} \sqrt {b \,x^{\frac {1}{3}}+a x}}{216315 b^{3} x^{2}}+\frac {1768 a^{5} \sqrt {b \,x^{\frac {1}{3}}+a x}}{168245 b^{4} x^{\frac {4}{3}}}-\frac {1768 a^{6} \sqrt {b \,x^{\frac {1}{3}}+a x}}{100947 b^{5} x^{\frac {2}{3}}}-\frac {884 a^{6} \sqrt {-a b}\, \sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x^{\frac {1}{3}}-\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {x^{\frac {1}{3}} a}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{100947 b^{5} \sqrt {b \,x^{\frac {1}{3}}+a x}}\) \(265\)

Input:

int((b*x^(1/3)+a*x)^(3/2)/x^6,x,method=_RETURNVERBOSE)
 

Output:

-2/1514205*(6630*a^6*(-a*b)^(1/2)*((x^(1/3)*a+(-a*b)^(1/2))/(-a*b)^(1/2))^ 
(1/2)*(-2*(x^(1/3)*a-(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x^(1/3)/(-a*b)^(1 
/2)*a)^(1/2)*EllipticF(((x^(1/3)*a+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2 
^(1/2))*x^(26/3)-1768*x^(23/3)*a^5*b^2+5304*x^(25/3)*a^6*b+952*a^4*b^3*x^7 
+216755*x^(17/3)*a^2*b^5-616*x^(19/3)*a^3*b^4+380380*a*b^6*x^5+13260*a^7*x 
^9+168245*x^(13/3)*b^7)/b^5/(x^(1/3)*(b+a*x^(2/3)))^(1/2)/x^(26/3)
 

Fricas [F]

\[ \int \frac {\left (b \sqrt [3]{x}+a x\right )^{3/2}}{x^6} \, dx=\int { \frac {{\left (a x + b x^{\frac {1}{3}}\right )}^{\frac {3}{2}}}{x^{6}} \,d x } \] Input:

integrate((b*x^(1/3)+a*x)^(3/2)/x^6,x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

integral((a*x + b*x^(1/3))^(3/2)/x^6, x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (b \sqrt [3]{x}+a x\right )^{3/2}}{x^6} \, dx=\text {Timed out} \] Input:

integrate((b*x**(1/3)+a*x)**(3/2)/x**6,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (b \sqrt [3]{x}+a x\right )^{3/2}}{x^6} \, dx=\int { \frac {{\left (a x + b x^{\frac {1}{3}}\right )}^{\frac {3}{2}}}{x^{6}} \,d x } \] Input:

integrate((b*x^(1/3)+a*x)^(3/2)/x^6,x, algorithm="maxima")
 

Output:

integrate((a*x + b*x^(1/3))^(3/2)/x^6, x)
 

Giac [F]

\[ \int \frac {\left (b \sqrt [3]{x}+a x\right )^{3/2}}{x^6} \, dx=\int { \frac {{\left (a x + b x^{\frac {1}{3}}\right )}^{\frac {3}{2}}}{x^{6}} \,d x } \] Input:

integrate((b*x^(1/3)+a*x)^(3/2)/x^6,x, algorithm="giac")
 

Output:

integrate((a*x + b*x^(1/3))^(3/2)/x^6, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (b \sqrt [3]{x}+a x\right )^{3/2}}{x^6} \, dx=\int \frac {{\left (a\,x+b\,x^{1/3}\right )}^{3/2}}{x^6} \,d x \] Input:

int((a*x + b*x^(1/3))^(3/2)/x^6,x)
 

Output:

int((a*x + b*x^(1/3))^(3/2)/x^6, x)
 

Reduce [F]

\[ \int \frac {\left (b \sqrt [3]{x}+a x\right )^{3/2}}{x^6} \, dx=\frac {-\frac {2 x^{\frac {2}{3}} \sqrt {x^{\frac {2}{3}} a +b}\, a}{7}-\frac {38 \sqrt {x^{\frac {2}{3}} a +b}\, b}{175}+\frac {4 \sqrt {x}\, \left (\int \frac {\sqrt {x^{\frac {2}{3}} a +b}}{\sqrt {x}\, b \,x^{5}+x^{\frac {37}{6}} a}d x \right ) b^{2} x^{4}}{175}}{\sqrt {x}\, x^{4}} \] Input:

int((b*x^(1/3)+a*x)^(3/2)/x^6,x)
 

Output:

(2*( - 25*x**(2/3)*sqrt(x**(2/3)*a + b)*a - 19*sqrt(x**(2/3)*a + b)*b + 2* 
sqrt(x)*int(sqrt(x**(2/3)*a + b)/(sqrt(x)*b*x**5 + x**(1/6)*a*x**6),x)*b** 
2*x**4))/(175*sqrt(x)*x**4)