\(\int \frac {A+B x^2}{\sqrt {x} (b x^2+c x^4)} \, dx\) [124]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 173 \[ \int \frac {A+B x^2}{\sqrt {x} \left (b x^2+c x^4\right )} \, dx=-\frac {2 A}{3 b x^{3/2}}-\frac {(b B-A c) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {(b B-A c) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {(b B-A c) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{\sqrt {2} b^{7/4} \sqrt [4]{c}} \] Output:

-2/3*A/b/x^(3/2)-1/2*(-A*c+B*b)*arctan(1-2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))* 
2^(1/2)/b^(7/4)/c^(1/4)+1/2*(-A*c+B*b)*arctan(1+2^(1/2)*c^(1/4)*x^(1/2)/b^ 
(1/4))*2^(1/2)/b^(7/4)/c^(1/4)+1/2*(-A*c+B*b)*arctanh(2^(1/2)*b^(1/4)*c^(1 
/4)*x^(1/2)/(b^(1/2)+c^(1/2)*x))*2^(1/2)/b^(7/4)/c^(1/4)
 

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.79 \[ \int \frac {A+B x^2}{\sqrt {x} \left (b x^2+c x^4\right )} \, dx=-\frac {2 A}{3 b x^{3/2}}-\frac {(b B-A c) \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )}{\sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {(b B-A c) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{\sqrt {2} b^{7/4} \sqrt [4]{c}} \] Input:

Integrate[(A + B*x^2)/(Sqrt[x]*(b*x^2 + c*x^4)),x]
 

Output:

(-2*A)/(3*b*x^(3/2)) - ((b*B - A*c)*ArcTan[(Sqrt[b] - Sqrt[c]*x)/(Sqrt[2]* 
b^(1/4)*c^(1/4)*Sqrt[x])])/(Sqrt[2]*b^(7/4)*c^(1/4)) + ((b*B - A*c)*ArcTan 
h[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/(Sqrt[b] + Sqrt[c]*x)])/(Sqrt[2]*b^(7/ 
4)*c^(1/4))
 

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.38, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.423, Rules used = {9, 359, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x^2}{\sqrt {x} \left (b x^2+c x^4\right )} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {A+B x^2}{x^{5/2} \left (b+c x^2\right )}dx\)

\(\Big \downarrow \) 359

\(\displaystyle \frac {(b B-A c) \int \frac {1}{\sqrt {x} \left (c x^2+b\right )}dx}{b}-\frac {2 A}{3 b x^{3/2}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 (b B-A c) \int \frac {1}{c x^2+b}d\sqrt {x}}{b}-\frac {2 A}{3 b x^{3/2}}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {2 (b B-A c) \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}\right )}{b}-\frac {2 A}{3 b x^{3/2}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 (b B-A c) \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {b}}\right )}{b}-\frac {2 A}{3 b x^{3/2}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 (b B-A c) \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2 A}{3 b x^{3/2}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 (b B-A c) \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2 A}{3 b x^{3/2}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 (b B-A c) \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2 A}{3 b x^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 (b B-A c) \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2 A}{3 b x^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 (b B-A c) \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2 A}{3 b x^{3/2}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 (b B-A c) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2 A}{3 b x^{3/2}}\)

Input:

Int[(A + B*x^2)/(Sqrt[x]*(b*x^2 + c*x^4)),x]
 

Output:

(-2*A)/(3*b*x^(3/2)) + (2*(b*B - A*c)*((-(ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt 
[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqr 
t[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[b]) + (-1/2*Log[Sqrt[b] 
- Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(Sqrt[2]*b^(1/4)*c^(1/4)) + 
 Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(2*Sqrt[2]*b^( 
1/4)*c^(1/4)))/(2*Sqrt[b])))/b
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 359
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[c*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] + 
Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)* 
(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] 
&& LtQ[m, -1] &&  !ILtQ[p, -1]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.45 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.72

method result size
derivativedivides \(\frac {\left (-A c +B b \right ) \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2}}-\frac {2 A}{3 b \,x^{\frac {3}{2}}}\) \(124\)
default \(\frac {\left (-A c +B b \right ) \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2}}-\frac {2 A}{3 b \,x^{\frac {3}{2}}}\) \(124\)
risch \(-\frac {2 A}{3 b \,x^{\frac {3}{2}}}-\frac {\left (A c -B b \right ) \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2}}\) \(124\)

Input:

int((B*x^2+A)/x^(1/2)/(c*x^4+b*x^2),x,method=_RETURNVERBOSE)
 

Output:

1/4*(-A*c+B*b)/b^2*(b/c)^(1/4)*2^(1/2)*(ln((x+(b/c)^(1/4)*x^(1/2)*2^(1/2)+ 
(b/c)^(1/2))/(x-(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2)))+2*arctan(2^(1/2) 
/(b/c)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)-1))-2/3*A/b/x 
^(3/2)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 590, normalized size of antiderivative = 3.41 \[ \int \frac {A+B x^2}{\sqrt {x} \left (b x^2+c x^4\right )} \, dx=-\frac {3 \, b x^{2} \left (-\frac {B^{4} b^{4} - 4 \, A B^{3} b^{3} c + 6 \, A^{2} B^{2} b^{2} c^{2} - 4 \, A^{3} B b c^{3} + A^{4} c^{4}}{b^{7} c}\right )^{\frac {1}{4}} \log \left (b^{2} \left (-\frac {B^{4} b^{4} - 4 \, A B^{3} b^{3} c + 6 \, A^{2} B^{2} b^{2} c^{2} - 4 \, A^{3} B b c^{3} + A^{4} c^{4}}{b^{7} c}\right )^{\frac {1}{4}} - {\left (B b - A c\right )} \sqrt {x}\right ) + 3 i \, b x^{2} \left (-\frac {B^{4} b^{4} - 4 \, A B^{3} b^{3} c + 6 \, A^{2} B^{2} b^{2} c^{2} - 4 \, A^{3} B b c^{3} + A^{4} c^{4}}{b^{7} c}\right )^{\frac {1}{4}} \log \left (i \, b^{2} \left (-\frac {B^{4} b^{4} - 4 \, A B^{3} b^{3} c + 6 \, A^{2} B^{2} b^{2} c^{2} - 4 \, A^{3} B b c^{3} + A^{4} c^{4}}{b^{7} c}\right )^{\frac {1}{4}} - {\left (B b - A c\right )} \sqrt {x}\right ) - 3 i \, b x^{2} \left (-\frac {B^{4} b^{4} - 4 \, A B^{3} b^{3} c + 6 \, A^{2} B^{2} b^{2} c^{2} - 4 \, A^{3} B b c^{3} + A^{4} c^{4}}{b^{7} c}\right )^{\frac {1}{4}} \log \left (-i \, b^{2} \left (-\frac {B^{4} b^{4} - 4 \, A B^{3} b^{3} c + 6 \, A^{2} B^{2} b^{2} c^{2} - 4 \, A^{3} B b c^{3} + A^{4} c^{4}}{b^{7} c}\right )^{\frac {1}{4}} - {\left (B b - A c\right )} \sqrt {x}\right ) - 3 \, b x^{2} \left (-\frac {B^{4} b^{4} - 4 \, A B^{3} b^{3} c + 6 \, A^{2} B^{2} b^{2} c^{2} - 4 \, A^{3} B b c^{3} + A^{4} c^{4}}{b^{7} c}\right )^{\frac {1}{4}} \log \left (-b^{2} \left (-\frac {B^{4} b^{4} - 4 \, A B^{3} b^{3} c + 6 \, A^{2} B^{2} b^{2} c^{2} - 4 \, A^{3} B b c^{3} + A^{4} c^{4}}{b^{7} c}\right )^{\frac {1}{4}} - {\left (B b - A c\right )} \sqrt {x}\right ) + 4 \, A \sqrt {x}}{6 \, b x^{2}} \] Input:

integrate((B*x^2+A)/x^(1/2)/(c*x^4+b*x^2),x, algorithm="fricas")
 

Output:

-1/6*(3*b*x^2*(-(B^4*b^4 - 4*A*B^3*b^3*c + 6*A^2*B^2*b^2*c^2 - 4*A^3*B*b*c 
^3 + A^4*c^4)/(b^7*c))^(1/4)*log(b^2*(-(B^4*b^4 - 4*A*B^3*b^3*c + 6*A^2*B^ 
2*b^2*c^2 - 4*A^3*B*b*c^3 + A^4*c^4)/(b^7*c))^(1/4) - (B*b - A*c)*sqrt(x)) 
 + 3*I*b*x^2*(-(B^4*b^4 - 4*A*B^3*b^3*c + 6*A^2*B^2*b^2*c^2 - 4*A^3*B*b*c^ 
3 + A^4*c^4)/(b^7*c))^(1/4)*log(I*b^2*(-(B^4*b^4 - 4*A*B^3*b^3*c + 6*A^2*B 
^2*b^2*c^2 - 4*A^3*B*b*c^3 + A^4*c^4)/(b^7*c))^(1/4) - (B*b - A*c)*sqrt(x) 
) - 3*I*b*x^2*(-(B^4*b^4 - 4*A*B^3*b^3*c + 6*A^2*B^2*b^2*c^2 - 4*A^3*B*b*c 
^3 + A^4*c^4)/(b^7*c))^(1/4)*log(-I*b^2*(-(B^4*b^4 - 4*A*B^3*b^3*c + 6*A^2 
*B^2*b^2*c^2 - 4*A^3*B*b*c^3 + A^4*c^4)/(b^7*c))^(1/4) - (B*b - A*c)*sqrt( 
x)) - 3*b*x^2*(-(B^4*b^4 - 4*A*B^3*b^3*c + 6*A^2*B^2*b^2*c^2 - 4*A^3*B*b*c 
^3 + A^4*c^4)/(b^7*c))^(1/4)*log(-b^2*(-(B^4*b^4 - 4*A*B^3*b^3*c + 6*A^2*B 
^2*b^2*c^2 - 4*A^3*B*b*c^3 + A^4*c^4)/(b^7*c))^(1/4) - (B*b - A*c)*sqrt(x) 
) + 4*A*sqrt(x))/(b*x^2)
 

Sympy [A] (verification not implemented)

Time = 6.74 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.49 \[ \int \frac {A+B x^2}{\sqrt {x} \left (b x^2+c x^4\right )} \, dx=\begin {cases} \tilde {\infty } \left (- \frac {2 A}{7 x^{\frac {7}{2}}} - \frac {2 B}{3 x^{\frac {3}{2}}}\right ) & \text {for}\: b = 0 \wedge c = 0 \\\frac {- \frac {2 A}{7 x^{\frac {7}{2}}} - \frac {2 B}{3 x^{\frac {3}{2}}}}{c} & \text {for}\: b = 0 \\\frac {- \frac {2 A}{3 x^{\frac {3}{2}}} + 2 B \sqrt {x}}{b} & \text {for}\: c = 0 \\- \frac {2 A}{3 b x^{\frac {3}{2}}} + \frac {A c \sqrt [4]{- \frac {b}{c}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {b}{c}} \right )}}{2 b^{2}} - \frac {A c \sqrt [4]{- \frac {b}{c}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {b}{c}} \right )}}{2 b^{2}} - \frac {A c \sqrt [4]{- \frac {b}{c}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {b}{c}}} \right )}}{b^{2}} - \frac {B \sqrt [4]{- \frac {b}{c}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {b}{c}} \right )}}{2 b} + \frac {B \sqrt [4]{- \frac {b}{c}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {b}{c}} \right )}}{2 b} + \frac {B \sqrt [4]{- \frac {b}{c}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {b}{c}}} \right )}}{b} & \text {otherwise} \end {cases} \] Input:

integrate((B*x**2+A)/x**(1/2)/(c*x**4+b*x**2),x)
 

Output:

Piecewise((zoo*(-2*A/(7*x**(7/2)) - 2*B/(3*x**(3/2))), Eq(b, 0) & Eq(c, 0) 
), ((-2*A/(7*x**(7/2)) - 2*B/(3*x**(3/2)))/c, Eq(b, 0)), ((-2*A/(3*x**(3/2 
)) + 2*B*sqrt(x))/b, Eq(c, 0)), (-2*A/(3*b*x**(3/2)) + A*c*(-b/c)**(1/4)*l 
og(sqrt(x) - (-b/c)**(1/4))/(2*b**2) - A*c*(-b/c)**(1/4)*log(sqrt(x) + (-b 
/c)**(1/4))/(2*b**2) - A*c*(-b/c)**(1/4)*atan(sqrt(x)/(-b/c)**(1/4))/b**2 
- B*(-b/c)**(1/4)*log(sqrt(x) - (-b/c)**(1/4))/(2*b) + B*(-b/c)**(1/4)*log 
(sqrt(x) + (-b/c)**(1/4))/(2*b) + B*(-b/c)**(1/4)*atan(sqrt(x)/(-b/c)**(1/ 
4))/b, True))
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.26 \[ \int \frac {A+B x^2}{\sqrt {x} \left (b x^2+c x^4\right )} \, dx=\frac {\frac {2 \, \sqrt {2} {\left (B b - A c\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {2 \, \sqrt {2} {\left (B b - A c\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {\sqrt {2} {\left (B b - A c\right )} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}} c^{\frac {1}{4}}} - \frac {\sqrt {2} {\left (B b - A c\right )} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}} c^{\frac {1}{4}}}}{4 \, b} - \frac {2 \, A}{3 \, b x^{\frac {3}{2}}} \] Input:

integrate((B*x^2+A)/x^(1/2)/(c*x^4+b*x^2),x, algorithm="maxima")
 

Output:

1/4*(2*sqrt(2)*(B*b - A*c)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) + 2 
*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(b)*sqrt(sqrt(b)*sqrt(c))) + 
 2*sqrt(2)*(B*b - A*c)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sq 
rt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(b)*sqrt(sqrt(b)*sqrt(c))) + sq 
rt(2)*(B*b - A*c)*log(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b 
))/(b^(3/4)*c^(1/4)) - sqrt(2)*(B*b - A*c)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sq 
rt(x) + sqrt(c)*x + sqrt(b))/(b^(3/4)*c^(1/4)))/b - 2/3*A/(b*x^(3/2))
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 251 vs. \(2 (125) = 250\).

Time = 0.25 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.45 \[ \int \frac {A+B x^2}{\sqrt {x} \left (b x^2+c x^4\right )} \, dx=\frac {\sqrt {2} {\left (\left (b c^{3}\right )^{\frac {1}{4}} B b - \left (b c^{3}\right )^{\frac {1}{4}} A c\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, b^{2} c} + \frac {\sqrt {2} {\left (\left (b c^{3}\right )^{\frac {1}{4}} B b - \left (b c^{3}\right )^{\frac {1}{4}} A c\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, b^{2} c} + \frac {\sqrt {2} {\left (\left (b c^{3}\right )^{\frac {1}{4}} B b - \left (b c^{3}\right )^{\frac {1}{4}} A c\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, b^{2} c} - \frac {\sqrt {2} {\left (\left (b c^{3}\right )^{\frac {1}{4}} B b - \left (b c^{3}\right )^{\frac {1}{4}} A c\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, b^{2} c} - \frac {2 \, A}{3 \, b x^{\frac {3}{2}}} \] Input:

integrate((B*x^2+A)/x^(1/2)/(c*x^4+b*x^2),x, algorithm="giac")
 

Output:

1/2*sqrt(2)*((b*c^3)^(1/4)*B*b - (b*c^3)^(1/4)*A*c)*arctan(1/2*sqrt(2)*(sq 
rt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/(b^2*c) + 1/2*sqrt(2)*((b*c^3) 
^(1/4)*B*b - (b*c^3)^(1/4)*A*c)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 
 2*sqrt(x))/(b/c)^(1/4))/(b^2*c) + 1/4*sqrt(2)*((b*c^3)^(1/4)*B*b - (b*c^3 
)^(1/4)*A*c)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^2*c) - 1/ 
4*sqrt(2)*((b*c^3)^(1/4)*B*b - (b*c^3)^(1/4)*A*c)*log(-sqrt(2)*sqrt(x)*(b/ 
c)^(1/4) + x + sqrt(b/c))/(b^2*c) - 2/3*A/(b*x^(3/2))
 

Mupad [B] (verification not implemented)

Time = 9.06 (sec) , antiderivative size = 811, normalized size of antiderivative = 4.69 \[ \int \frac {A+B x^2}{\sqrt {x} \left (b x^2+c x^4\right )} \, dx =\text {Too large to display} \] Input:

int((A + B*x^2)/(x^(1/2)*(b*x^2 + c*x^4)),x)
 

Output:

- (2*A)/(3*b*x^(3/2)) - (atan((((A*c - B*b)*(x^(1/2)*(16*A^2*b^3*c^5 + 16* 
B^2*b^5*c^3 - 32*A*B*b^4*c^4) - ((A*c - B*b)*(32*A*b^5*c^4 - 32*B*b^6*c^3) 
)/(2*(-b)^(7/4)*c^(1/4)))*1i)/(2*(-b)^(7/4)*c^(1/4)) + ((A*c - B*b)*(x^(1/ 
2)*(16*A^2*b^3*c^5 + 16*B^2*b^5*c^3 - 32*A*B*b^4*c^4) + ((A*c - B*b)*(32*A 
*b^5*c^4 - 32*B*b^6*c^3))/(2*(-b)^(7/4)*c^(1/4)))*1i)/(2*(-b)^(7/4)*c^(1/4 
)))/(((A*c - B*b)*(x^(1/2)*(16*A^2*b^3*c^5 + 16*B^2*b^5*c^3 - 32*A*B*b^4*c 
^4) - ((A*c - B*b)*(32*A*b^5*c^4 - 32*B*b^6*c^3))/(2*(-b)^(7/4)*c^(1/4)))) 
/(2*(-b)^(7/4)*c^(1/4)) - ((A*c - B*b)*(x^(1/2)*(16*A^2*b^3*c^5 + 16*B^2*b 
^5*c^3 - 32*A*B*b^4*c^4) + ((A*c - B*b)*(32*A*b^5*c^4 - 32*B*b^6*c^3))/(2* 
(-b)^(7/4)*c^(1/4))))/(2*(-b)^(7/4)*c^(1/4))))*(A*c - B*b)*1i)/((-b)^(7/4) 
*c^(1/4)) - (atan((((A*c - B*b)*(x^(1/2)*(16*A^2*b^3*c^5 + 16*B^2*b^5*c^3 
- 32*A*B*b^4*c^4) - ((A*c - B*b)*(32*A*b^5*c^4 - 32*B*b^6*c^3)*1i)/(2*(-b) 
^(7/4)*c^(1/4))))/(2*(-b)^(7/4)*c^(1/4)) + ((A*c - B*b)*(x^(1/2)*(16*A^2*b 
^3*c^5 + 16*B^2*b^5*c^3 - 32*A*B*b^4*c^4) + ((A*c - B*b)*(32*A*b^5*c^4 - 3 
2*B*b^6*c^3)*1i)/(2*(-b)^(7/4)*c^(1/4))))/(2*(-b)^(7/4)*c^(1/4)))/(((A*c - 
 B*b)*(x^(1/2)*(16*A^2*b^3*c^5 + 16*B^2*b^5*c^3 - 32*A*B*b^4*c^4) - ((A*c 
- B*b)*(32*A*b^5*c^4 - 32*B*b^6*c^3)*1i)/(2*(-b)^(7/4)*c^(1/4)))*1i)/(2*(- 
b)^(7/4)*c^(1/4)) - ((A*c - B*b)*(x^(1/2)*(16*A^2*b^3*c^5 + 16*B^2*b^5*c^3 
 - 32*A*B*b^4*c^4) + ((A*c - B*b)*(32*A*b^5*c^4 - 32*B*b^6*c^3)*1i)/(2*(-b 
)^(7/4)*c^(1/4)))*1i)/(2*(-b)^(7/4)*c^(1/4))))*(A*c - B*b))/((-b)^(7/4)...
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 319, normalized size of antiderivative = 1.84 \[ \int \frac {A+B x^2}{\sqrt {x} \left (b x^2+c x^4\right )} \, dx=\frac {6 \sqrt {x}\, c^{\frac {7}{4}} b^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right ) a x -6 \sqrt {x}\, c^{\frac {3}{4}} b^{\frac {9}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right ) x -6 \sqrt {x}\, c^{\frac {7}{4}} b^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right ) a x +6 \sqrt {x}\, c^{\frac {3}{4}} b^{\frac {9}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right ) x +3 \sqrt {x}\, c^{\frac {7}{4}} b^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right ) a x -3 \sqrt {x}\, c^{\frac {3}{4}} b^{\frac {9}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right ) x -3 \sqrt {x}\, c^{\frac {7}{4}} b^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right ) a x +3 \sqrt {x}\, c^{\frac {3}{4}} b^{\frac {9}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right ) x -8 a b c}{12 \sqrt {x}\, b^{2} c x} \] Input:

int((B*x^2+A)/x^(1/2)/(c*x^4+b*x^2),x)
 

Output:

(6*sqrt(x)*c**(3/4)*b**(1/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) - 2*s 
qrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*a*c*x - 6*sqrt(x)*c**(3/4)*b* 
*(1/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(c))/(c**(1 
/4)*b**(1/4)*sqrt(2)))*b**2*x - 6*sqrt(x)*c**(3/4)*b**(1/4)*sqrt(2)*atan(( 
c**(1/4)*b**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)) 
)*a*c*x + 6*sqrt(x)*c**(3/4)*b**(1/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt 
(2) + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*b**2*x + 3*sqrt(x)*c 
**(3/4)*b**(1/4)*sqrt(2)*log( - sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b 
) + sqrt(c)*x)*a*c*x - 3*sqrt(x)*c**(3/4)*b**(1/4)*sqrt(2)*log( - sqrt(x)* 
c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*b**2*x - 3*sqrt(x)*c**(3/ 
4)*b**(1/4)*sqrt(2)*log(sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt 
(c)*x)*a*c*x + 3*sqrt(x)*c**(3/4)*b**(1/4)*sqrt(2)*log(sqrt(x)*c**(1/4)*b* 
*(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*b**2*x - 8*a*b*c)/(12*sqrt(x)*b**2*c 
*x)