\(\int \frac {x^{3/2} (A+B x^2)}{(b x^2+c x^4)^{3/2}} \, dx\) [268]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 318 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=-\frac {2 A \sqrt {x}}{b \sqrt {b x^2+c x^4}}+\frac {(b B-3 A c) x^{5/2}}{b^2 \sqrt {b x^2+c x^4}}-\frac {(b B-3 A c) x^{3/2} \left (b+c x^2\right )}{b^2 \sqrt {c} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}+\frac {(b B-3 A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{b^{7/4} c^{3/4} \sqrt {b x^2+c x^4}}-\frac {(b B-3 A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 b^{7/4} c^{3/4} \sqrt {b x^2+c x^4}} \] Output:

-2*A*x^(1/2)/b/(c*x^4+b*x^2)^(1/2)+(-3*A*c+B*b)*x^(5/2)/b^2/(c*x^4+b*x^2)^ 
(1/2)-(-3*A*c+B*b)*x^(3/2)*(c*x^2+b)/b^2/c^(1/2)/(b^(1/2)+c^(1/2)*x)/(c*x^ 
4+b*x^2)^(1/2)+(-3*A*c+B*b)*x*(b^(1/2)+c^(1/2)*x)*((c*x^2+b)/(b^(1/2)+c^(1 
/2)*x)^2)^(1/2)*EllipticE(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/ 
2))/b^(7/4)/c^(3/4)/(c*x^4+b*x^2)^(1/2)-1/2*(-3*A*c+B*b)*x*(b^(1/2)+c^(1/2 
)*x)*((c*x^2+b)/(b^(1/2)+c^(1/2)*x)^2)^(1/2)*InverseJacobiAM(2*arctan(c^(1 
/4)*x^(1/2)/b^(1/4)),1/2*2^(1/2))/b^(7/4)/c^(3/4)/(c*x^4+b*x^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.24 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\frac {2 \sqrt {x} \left (-3 A b+(b B-3 A c) x^2 \sqrt {1+\frac {c x^2}{b}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},-\frac {c x^2}{b}\right )\right )}{3 b^2 \sqrt {x^2 \left (b+c x^2\right )}} \] Input:

Integrate[(x^(3/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]
 

Output:

(2*Sqrt[x]*(-3*A*b + (b*B - 3*A*c)*x^2*Sqrt[1 + (c*x^2)/b]*Hypergeometric2 
F1[3/4, 3/2, 7/4, -((c*x^2)/b)]))/(3*b^2*Sqrt[x^2*(b + c*x^2)])
 

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 311, normalized size of antiderivative = 0.98, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {1944, 1428, 1431, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{3/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1944

\(\displaystyle \frac {(b B-3 A c) \int \frac {x^{7/2}}{\left (c x^4+b x^2\right )^{3/2}}dx}{b}-\frac {2 A \sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1428

\(\displaystyle \frac {(b B-3 A c) \left (\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {\int \frac {x^{3/2}}{\sqrt {c x^4+b x^2}}dx}{2 b}\right )}{b}-\frac {2 A \sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1431

\(\displaystyle \frac {(b B-3 A c) \left (\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {x \sqrt {b+c x^2} \int \frac {\sqrt {x}}{\sqrt {c x^2+b}}dx}{2 b \sqrt {b x^2+c x^4}}\right )}{b}-\frac {2 A \sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {(b B-3 A c) \left (\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {x \sqrt {b+c x^2} \int \frac {x}{\sqrt {c x^2+b}}d\sqrt {x}}{b \sqrt {b x^2+c x^4}}\right )}{b}-\frac {2 A \sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {(b B-3 A c) \left (\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\sqrt {b} \int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {b} \sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}\right )}{b}-\frac {2 A \sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(b B-3 A c) \left (\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}\right )}{b}-\frac {2 A \sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {(b B-3 A c) \left (\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}\right )}{b}-\frac {2 A \sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {(b B-3 A c) \left (\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {b+c x^2}}-\frac {\sqrt {x} \sqrt {b+c x^2}}{\sqrt {b}+\sqrt {c} x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}\right )}{b}-\frac {2 A \sqrt {x}}{b \sqrt {b x^2+c x^4}}\)

Input:

Int[(x^(3/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]
 

Output:

(-2*A*Sqrt[x])/(b*Sqrt[b*x^2 + c*x^4]) + ((b*B - 3*A*c)*(x^(5/2)/(b*Sqrt[b 
*x^2 + c*x^4]) - (x*Sqrt[b + c*x^2]*(-((-((Sqrt[x]*Sqrt[b + c*x^2])/(Sqrt[ 
b] + Sqrt[c]*x)) + (b^(1/4)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b 
] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(c^ 
(1/4)*Sqrt[b + c*x^2]))/Sqrt[c]) + (b^(1/4)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b 
+ c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^( 
1/4)], 1/2])/(2*c^(3/4)*Sqrt[b + c*x^2])))/(b*Sqrt[b*x^2 + c*x^4])))/b
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1428
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(-d)*(d*x)^(m - 1)*((b*x^2 + c*x^4)^(p + 1)/(2*b*(p + 1))), x] + Simp[d^2* 
((m + 4*p + 3)/(2*b*(p + 1)))   Int[(d*x)^(m - 2)*(b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p] && LtQ[p, -1]
 

rule 1431
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(b*x^2 + c*x^4)^p/((d*x)^(2*p)*(b + c*x^2)^p)   Int[(d*x)^(m + 2*p)*(b + c 
*x^2)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1944
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + 
(d_.)*(x_)^(n_.)), x_Symbol] :> Simp[c*e^(j - 1)*(e*x)^(m - j + 1)*((a*x^j 
+ b*x^(j + n))^(p + 1)/(a*(m + j*p + 1))), x] + Simp[(a*d*(m + j*p + 1) - b 
*c*(m + n + p*(j + n) + 1))/(a*e^n*(m + j*p + 1))   Int[(e*x)^(m + n)*(a*x^ 
j + b*x^(j + n))^p, x], x] /; FreeQ[{a, b, c, d, e, j, p}, x] && EqQ[jn, j 
+ n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && (LtQ[m + j*p, -1 
] || (IntegersQ[m - 1/2, p - 1/2] && LtQ[p, 0] && LtQ[m, (-n)*p - 1])) && ( 
GtQ[e, 0] || IntegersQ[j, n]) && NeQ[m + j*p + 1, 0] && NeQ[m - n + j*p + 1 
, 0]
 
Maple [A] (verified)

Time = 1.44 (sec) , antiderivative size = 392, normalized size of antiderivative = 1.23

method result size
default \(\frac {x^{\frac {5}{2}} \left (c \,x^{2}+b \right ) \left (6 A \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b c -3 A \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b c -2 B \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b^{2}+B \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b^{2}-6 A \,c^{2} x^{2}+2 x^{2} B b c -4 A b c \right )}{2 \left (c \,x^{4}+b \,x^{2}\right )^{\frac {3}{2}} c \,b^{2}}\) \(392\)
risch \(-\frac {2 A \left (c \,x^{2}+b \right ) \sqrt {x}}{b^{2} \sqrt {x^{2} \left (c \,x^{2}+b \right )}}+\frac {\left (\frac {A \sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \left (-\frac {2 \sqrt {-b c}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-b c}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{\sqrt {c \,x^{3}+b x}}-b \left (A c -B b \right ) \left (\frac {x^{2}}{b \sqrt {\left (x^{2}+\frac {b}{c}\right ) c x}}-\frac {\sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \left (-\frac {2 \sqrt {-b c}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-b c}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{2 b c \sqrt {c \,x^{3}+b x}}\right )\right ) \sqrt {x}\, \sqrt {x \left (c \,x^{2}+b \right )}}{b^{2} \sqrt {x^{2} \left (c \,x^{2}+b \right )}}\) \(412\)

Input:

int(x^(3/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/(c*x^4+b*x^2)^(3/2)*x^(5/2)*(c*x^2+b)*(6*A*((c*x+(-b*c)^(1/2))/(-b*c)^ 
(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-c/(-b*c)^( 
1/2)*x)^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2 
))*b*c-3*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^( 
1/2))/(-b*c)^(1/2))^(1/2)*(-c/(-b*c)^(1/2)*x)^(1/2)*EllipticF(((c*x+(-b*c) 
^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b*c-2*B*((c*x+(-b*c)^(1/2))/(-b*c 
)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-c/(-b*c) 
^(1/2)*x)^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1 
/2))*b^2+B*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^( 
1/2))/(-b*c)^(1/2))^(1/2)*(-c/(-b*c)^(1/2)*x)^(1/2)*EllipticF(((c*x+(-b*c) 
^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b^2-6*A*c^2*x^2+2*x^2*B*b*c-4*A*b 
*c)/c/b^2
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.36 \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\frac {{\left ({\left (B b c - 3 \, A c^{2}\right )} x^{4} + {\left (B b^{2} - 3 \, A b c\right )} x^{2}\right )} \sqrt {c} {\rm weierstrassZeta}\left (-\frac {4 \, b}{c}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, b}{c}, 0, x\right )\right ) - \sqrt {c x^{4} + b x^{2}} {\left (2 \, A b c - {\left (B b c - 3 \, A c^{2}\right )} x^{2}\right )} \sqrt {x}}{b^{2} c^{2} x^{4} + b^{3} c x^{2}} \] Input:

integrate(x^(3/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")
 

Output:

(((B*b*c - 3*A*c^2)*x^4 + (B*b^2 - 3*A*b*c)*x^2)*sqrt(c)*weierstrassZeta(- 
4*b/c, 0, weierstrassPInverse(-4*b/c, 0, x)) - sqrt(c*x^4 + b*x^2)*(2*A*b* 
c - (B*b*c - 3*A*c^2)*x^2)*sqrt(x))/(b^2*c^2*x^4 + b^3*c*x^2)
 

Sympy [F]

\[ \int \frac {x^{3/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^{\frac {3}{2}} \left (A + B x^{2}\right )}{\left (x^{2} \left (b + c x^{2}\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(x**(3/2)*(B*x**2+A)/(c*x**4+b*x**2)**(3/2),x)
 

Output:

Integral(x**(3/2)*(A + B*x**2)/(x**2*(b + c*x**2))**(3/2), x)
 

Maxima [F]

\[ \int \frac {x^{3/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} x^{\frac {3}{2}}}{{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^(3/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate((B*x^2 + A)*x^(3/2)/(c*x^4 + b*x^2)^(3/2), x)
 

Giac [F]

\[ \int \frac {x^{3/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} x^{\frac {3}{2}}}{{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^(3/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")
 

Output:

integrate((B*x^2 + A)*x^(3/2)/(c*x^4 + b*x^2)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{3/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^{3/2}\,\left (B\,x^2+A\right )}{{\left (c\,x^4+b\,x^2\right )}^{3/2}} \,d x \] Input:

int((x^(3/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int((x^(3/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2), x)
 

Reduce [F]

\[ \int \frac {x^{3/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx=\frac {-2 \sqrt {c \,x^{2}+b}\, b +3 \sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {c \,x^{2}+b}}{c^{2} x^{6}+2 b c \,x^{4}+b^{2} x^{2}}d x \right ) a b c +3 \sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {c \,x^{2}+b}}{c^{2} x^{6}+2 b c \,x^{4}+b^{2} x^{2}}d x \right ) a \,c^{2} x^{2}-\sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {c \,x^{2}+b}}{c^{2} x^{6}+2 b c \,x^{4}+b^{2} x^{2}}d x \right ) b^{3}-\sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {c \,x^{2}+b}}{c^{2} x^{6}+2 b c \,x^{4}+b^{2} x^{2}}d x \right ) b^{2} c \,x^{2}}{3 \sqrt {x}\, c \left (c \,x^{2}+b \right )} \] Input:

int(x^(3/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x)
 

Output:

( - 2*sqrt(b + c*x**2)*b + 3*sqrt(x)*int((sqrt(x)*sqrt(b + c*x**2))/(b**2* 
x**2 + 2*b*c*x**4 + c**2*x**6),x)*a*b*c + 3*sqrt(x)*int((sqrt(x)*sqrt(b + 
c*x**2))/(b**2*x**2 + 2*b*c*x**4 + c**2*x**6),x)*a*c**2*x**2 - sqrt(x)*int 
((sqrt(x)*sqrt(b + c*x**2))/(b**2*x**2 + 2*b*c*x**4 + c**2*x**6),x)*b**3 - 
 sqrt(x)*int((sqrt(x)*sqrt(b + c*x**2))/(b**2*x**2 + 2*b*c*x**4 + c**2*x** 
6),x)*b**2*c*x**2)/(3*sqrt(x)*c*(b + c*x**2))