\(\int \frac {(a^2+2 a b x+b^2 x^2)^{5/2}}{(d+e x)^9} \, dx\) [305]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 149 \[ \int \frac {\left (a^2+2 a b x+b^2 x^2\right )^{5/2}}{(d+e x)^9} \, dx=\frac {(a+b x)^5 \sqrt {a^2+2 a b x+b^2 x^2}}{8 (b d-a e) (d+e x)^8}+\frac {b (a+b x)^5 \sqrt {a^2+2 a b x+b^2 x^2}}{28 (b d-a e)^2 (d+e x)^7}+\frac {b^2 (a+b x)^5 \sqrt {a^2+2 a b x+b^2 x^2}}{168 (b d-a e)^3 (d+e x)^6} \] Output:

1/8*(b*x+a)^5*((b*x+a)^2)^(1/2)/(-a*e+b*d)/(e*x+d)^8+1/28*b*(b*x+a)^5*((b* 
x+a)^2)^(1/2)/(-a*e+b*d)^2/(e*x+d)^7+1/168*b^2*(b*x+a)^5*((b*x+a)^2)^(1/2) 
/(-a*e+b*d)^3/(e*x+d)^6
 

Mathematica [A] (verified)

Time = 1.07 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.50 \[ \int \frac {\left (a^2+2 a b x+b^2 x^2\right )^{5/2}}{(d+e x)^9} \, dx=-\frac {\sqrt {(a+b x)^2} \left (21 a^5 e^5+15 a^4 b e^4 (d+8 e x)+10 a^3 b^2 e^3 \left (d^2+8 d e x+28 e^2 x^2\right )+6 a^2 b^3 e^2 \left (d^3+8 d^2 e x+28 d e^2 x^2+56 e^3 x^3\right )+3 a b^4 e \left (d^4+8 d^3 e x+28 d^2 e^2 x^2+56 d e^3 x^3+70 e^4 x^4\right )+b^5 \left (d^5+8 d^4 e x+28 d^3 e^2 x^2+56 d^2 e^3 x^3+70 d e^4 x^4+56 e^5 x^5\right )\right )}{168 e^6 (a+b x) (d+e x)^8} \] Input:

Integrate[(a^2 + 2*a*b*x + b^2*x^2)^(5/2)/(d + e*x)^9,x]
 

Output:

-1/168*(Sqrt[(a + b*x)^2]*(21*a^5*e^5 + 15*a^4*b*e^4*(d + 8*e*x) + 10*a^3* 
b^2*e^3*(d^2 + 8*d*e*x + 28*e^2*x^2) + 6*a^2*b^3*e^2*(d^3 + 8*d^2*e*x + 28 
*d*e^2*x^2 + 56*e^3*x^3) + 3*a*b^4*e*(d^4 + 8*d^3*e*x + 28*d^2*e^2*x^2 + 5 
6*d*e^3*x^3 + 70*e^4*x^4) + b^5*(d^5 + 8*d^4*e*x + 28*d^3*e^2*x^2 + 56*d^2 
*e^3*x^3 + 70*d*e^4*x^4 + 56*e^5*x^5)))/(e^6*(a + b*x)*(d + e*x)^8)
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.87, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {1102, 27, 55, 55, 48}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a^2+2 a b x+b^2 x^2\right )^{5/2}}{(d+e x)^9} \, dx\)

\(\Big \downarrow \) 1102

\(\displaystyle \frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \frac {b^5 (a+b x)^5}{(d+e x)^9}dx}{b^5 (a+b x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \frac {(a+b x)^5}{(d+e x)^9}dx}{a+b x}\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {\sqrt {a^2+2 a b x+b^2 x^2} \left (\frac {b \int \frac {(a+b x)^5}{(d+e x)^8}dx}{4 (b d-a e)}+\frac {(a+b x)^6}{8 (d+e x)^8 (b d-a e)}\right )}{a+b x}\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {\sqrt {a^2+2 a b x+b^2 x^2} \left (\frac {b \left (\frac {b \int \frac {(a+b x)^5}{(d+e x)^7}dx}{7 (b d-a e)}+\frac {(a+b x)^6}{7 (d+e x)^7 (b d-a e)}\right )}{4 (b d-a e)}+\frac {(a+b x)^6}{8 (d+e x)^8 (b d-a e)}\right )}{a+b x}\)

\(\Big \downarrow \) 48

\(\displaystyle \frac {\sqrt {a^2+2 a b x+b^2 x^2} \left (\frac {(a+b x)^6}{8 (d+e x)^8 (b d-a e)}+\frac {b \left (\frac {b (a+b x)^6}{42 (d+e x)^6 (b d-a e)^2}+\frac {(a+b x)^6}{7 (d+e x)^7 (b d-a e)}\right )}{4 (b d-a e)}\right )}{a+b x}\)

Input:

Int[(a^2 + 2*a*b*x + b^2*x^2)^(5/2)/(d + e*x)^9,x]
 

Output:

(Sqrt[a^2 + 2*a*b*x + b^2*x^2]*((a + b*x)^6/(8*(b*d - a*e)*(d + e*x)^8) + 
(b*((a + b*x)^6/(7*(b*d - a*e)*(d + e*x)^7) + (b*(a + b*x)^6)/(42*(b*d - a 
*e)^2*(d + e*x)^6)))/(4*(b*d - a*e))))/(a + b*x)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 48
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp 
[(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{ 
a, b, c, d, m, n}, x] && EqQ[m + n + 2, 0] && NeQ[m, -1]
 

rule 55
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(S 
implify[m + n + 2]/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^Simplify[m + 1]*( 
c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && ILtQ[Simplify[m + n + 
 2], 0] && NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[ 
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (SumSimplerQ[m, 1] ||  !SumSimp 
lerQ[n, 1])
 

rule 1102
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*F 
racPart[p]))   Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b, c, 
 d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(261\) vs. \(2(110)=220\).

Time = 5.67 (sec) , antiderivative size = 262, normalized size of antiderivative = 1.76

method result size
risch \(\frac {\sqrt {\left (b x +a \right )^{2}}\, \left (-\frac {b^{5} x^{5}}{3 e}-\frac {5 b^{4} \left (3 a e +b d \right ) x^{4}}{12 e^{2}}-\frac {b^{3} \left (6 e^{2} a^{2}+3 a b d e +b^{2} d^{2}\right ) x^{3}}{3 e^{3}}-\frac {b^{2} \left (10 e^{3} a^{3}+6 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e +b^{3} d^{3}\right ) x^{2}}{6 e^{4}}-\frac {b \left (15 a^{4} e^{4}+10 a^{3} b d \,e^{3}+6 a^{2} b^{2} d^{2} e^{2}+3 a \,b^{3} d^{3} e +b^{4} d^{4}\right ) x}{21 e^{5}}-\frac {21 e^{5} a^{5}+15 a^{4} b d \,e^{4}+10 a^{3} b^{2} d^{2} e^{3}+6 a^{2} b^{3} d^{3} e^{2}+3 a \,b^{4} d^{4} e +b^{5} d^{5}}{168 e^{6}}\right )}{\left (b x +a \right ) \left (e x +d \right )^{8}}\) \(262\)
gosper \(-\frac {\left (56 x^{5} e^{5} b^{5}+210 x^{4} a \,b^{4} e^{5}+70 x^{4} b^{5} d \,e^{4}+336 x^{3} a^{2} b^{3} e^{5}+168 x^{3} a \,b^{4} d \,e^{4}+56 x^{3} b^{5} d^{2} e^{3}+280 x^{2} a^{3} b^{2} e^{5}+168 x^{2} a^{2} b^{3} d \,e^{4}+84 x^{2} a \,b^{4} d^{2} e^{3}+28 x^{2} b^{5} d^{3} e^{2}+120 a^{4} b \,e^{5} x +80 a^{3} b^{2} d \,e^{4} x +48 x \,a^{2} b^{3} d^{2} e^{3}+24 x a \,b^{4} d^{3} e^{2}+8 b^{5} d^{4} e x +21 e^{5} a^{5}+15 a^{4} b d \,e^{4}+10 a^{3} b^{2} d^{2} e^{3}+6 a^{2} b^{3} d^{3} e^{2}+3 a \,b^{4} d^{4} e +b^{5} d^{5}\right ) \left (\left (b x +a \right )^{2}\right )^{\frac {5}{2}}}{168 e^{6} \left (e x +d \right )^{8} \left (b x +a \right )^{5}}\) \(288\)
default \(-\frac {\left (56 x^{5} e^{5} b^{5}+210 x^{4} a \,b^{4} e^{5}+70 x^{4} b^{5} d \,e^{4}+336 x^{3} a^{2} b^{3} e^{5}+168 x^{3} a \,b^{4} d \,e^{4}+56 x^{3} b^{5} d^{2} e^{3}+280 x^{2} a^{3} b^{2} e^{5}+168 x^{2} a^{2} b^{3} d \,e^{4}+84 x^{2} a \,b^{4} d^{2} e^{3}+28 x^{2} b^{5} d^{3} e^{2}+120 a^{4} b \,e^{5} x +80 a^{3} b^{2} d \,e^{4} x +48 x \,a^{2} b^{3} d^{2} e^{3}+24 x a \,b^{4} d^{3} e^{2}+8 b^{5} d^{4} e x +21 e^{5} a^{5}+15 a^{4} b d \,e^{4}+10 a^{3} b^{2} d^{2} e^{3}+6 a^{2} b^{3} d^{3} e^{2}+3 a \,b^{4} d^{4} e +b^{5} d^{5}\right ) \left (\left (b x +a \right )^{2}\right )^{\frac {5}{2}}}{168 e^{6} \left (e x +d \right )^{8} \left (b x +a \right )^{5}}\) \(288\)
orering \(-\frac {\left (56 x^{5} e^{5} b^{5}+210 x^{4} a \,b^{4} e^{5}+70 x^{4} b^{5} d \,e^{4}+336 x^{3} a^{2} b^{3} e^{5}+168 x^{3} a \,b^{4} d \,e^{4}+56 x^{3} b^{5} d^{2} e^{3}+280 x^{2} a^{3} b^{2} e^{5}+168 x^{2} a^{2} b^{3} d \,e^{4}+84 x^{2} a \,b^{4} d^{2} e^{3}+28 x^{2} b^{5} d^{3} e^{2}+120 a^{4} b \,e^{5} x +80 a^{3} b^{2} d \,e^{4} x +48 x \,a^{2} b^{3} d^{2} e^{3}+24 x a \,b^{4} d^{3} e^{2}+8 b^{5} d^{4} e x +21 e^{5} a^{5}+15 a^{4} b d \,e^{4}+10 a^{3} b^{2} d^{2} e^{3}+6 a^{2} b^{3} d^{3} e^{2}+3 a \,b^{4} d^{4} e +b^{5} d^{5}\right ) \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{\frac {5}{2}}}{168 e^{6} \left (b x +a \right )^{5} \left (e x +d \right )^{8}}\) \(297\)

Input:

int((b^2*x^2+2*a*b*x+a^2)^(5/2)/(e*x+d)^9,x,method=_RETURNVERBOSE)
 

Output:

((b*x+a)^2)^(1/2)/(b*x+a)*(-1/3*b^5/e*x^5-5/12*b^4/e^2*(3*a*e+b*d)*x^4-1/3 
/e^3*b^3*(6*a^2*e^2+3*a*b*d*e+b^2*d^2)*x^3-1/6*b^2/e^4*(10*a^3*e^3+6*a^2*b 
*d*e^2+3*a*b^2*d^2*e+b^3*d^3)*x^2-1/21*b/e^5*(15*a^4*e^4+10*a^3*b*d*e^3+6* 
a^2*b^2*d^2*e^2+3*a*b^3*d^3*e+b^4*d^4)*x-1/168/e^6*(21*a^5*e^5+15*a^4*b*d* 
e^4+10*a^3*b^2*d^2*e^3+6*a^2*b^3*d^3*e^2+3*a*b^4*d^4*e+b^5*d^5))/(e*x+d)^8
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 337 vs. \(2 (110) = 220\).

Time = 0.09 (sec) , antiderivative size = 337, normalized size of antiderivative = 2.26 \[ \int \frac {\left (a^2+2 a b x+b^2 x^2\right )^{5/2}}{(d+e x)^9} \, dx=-\frac {56 \, b^{5} e^{5} x^{5} + b^{5} d^{5} + 3 \, a b^{4} d^{4} e + 6 \, a^{2} b^{3} d^{3} e^{2} + 10 \, a^{3} b^{2} d^{2} e^{3} + 15 \, a^{4} b d e^{4} + 21 \, a^{5} e^{5} + 70 \, {\left (b^{5} d e^{4} + 3 \, a b^{4} e^{5}\right )} x^{4} + 56 \, {\left (b^{5} d^{2} e^{3} + 3 \, a b^{4} d e^{4} + 6 \, a^{2} b^{3} e^{5}\right )} x^{3} + 28 \, {\left (b^{5} d^{3} e^{2} + 3 \, a b^{4} d^{2} e^{3} + 6 \, a^{2} b^{3} d e^{4} + 10 \, a^{3} b^{2} e^{5}\right )} x^{2} + 8 \, {\left (b^{5} d^{4} e + 3 \, a b^{4} d^{3} e^{2} + 6 \, a^{2} b^{3} d^{2} e^{3} + 10 \, a^{3} b^{2} d e^{4} + 15 \, a^{4} b e^{5}\right )} x}{168 \, {\left (e^{14} x^{8} + 8 \, d e^{13} x^{7} + 28 \, d^{2} e^{12} x^{6} + 56 \, d^{3} e^{11} x^{5} + 70 \, d^{4} e^{10} x^{4} + 56 \, d^{5} e^{9} x^{3} + 28 \, d^{6} e^{8} x^{2} + 8 \, d^{7} e^{7} x + d^{8} e^{6}\right )}} \] Input:

integrate((b^2*x^2+2*a*b*x+a^2)^(5/2)/(e*x+d)^9,x, algorithm="fricas")
 

Output:

-1/168*(56*b^5*e^5*x^5 + b^5*d^5 + 3*a*b^4*d^4*e + 6*a^2*b^3*d^3*e^2 + 10* 
a^3*b^2*d^2*e^3 + 15*a^4*b*d*e^4 + 21*a^5*e^5 + 70*(b^5*d*e^4 + 3*a*b^4*e^ 
5)*x^4 + 56*(b^5*d^2*e^3 + 3*a*b^4*d*e^4 + 6*a^2*b^3*e^5)*x^3 + 28*(b^5*d^ 
3*e^2 + 3*a*b^4*d^2*e^3 + 6*a^2*b^3*d*e^4 + 10*a^3*b^2*e^5)*x^2 + 8*(b^5*d 
^4*e + 3*a*b^4*d^3*e^2 + 6*a^2*b^3*d^2*e^3 + 10*a^3*b^2*d*e^4 + 15*a^4*b*e 
^5)*x)/(e^14*x^8 + 8*d*e^13*x^7 + 28*d^2*e^12*x^6 + 56*d^3*e^11*x^5 + 70*d 
^4*e^10*x^4 + 56*d^5*e^9*x^3 + 28*d^6*e^8*x^2 + 8*d^7*e^7*x + d^8*e^6)
 

Sympy [F]

\[ \int \frac {\left (a^2+2 a b x+b^2 x^2\right )^{5/2}}{(d+e x)^9} \, dx=\int \frac {\left (\left (a + b x\right )^{2}\right )^{\frac {5}{2}}}{\left (d + e x\right )^{9}}\, dx \] Input:

integrate((b**2*x**2+2*a*b*x+a**2)**(5/2)/(e*x+d)**9,x)
 

Output:

Integral(((a + b*x)**2)**(5/2)/(d + e*x)**9, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (a^2+2 a b x+b^2 x^2\right )^{5/2}}{(d+e x)^9} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((b^2*x^2+2*a*b*x+a^2)^(5/2)/(e*x+d)^9,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*e-b*d>0)', see `assume?` for m 
ore detail
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 452 vs. \(2 (110) = 220\).

Time = 0.30 (sec) , antiderivative size = 452, normalized size of antiderivative = 3.03 \[ \int \frac {\left (a^2+2 a b x+b^2 x^2\right )^{5/2}}{(d+e x)^9} \, dx=\frac {b^{8} \mathrm {sgn}\left (b x + a\right )}{168 \, {\left (b^{3} d^{3} e^{6} - 3 \, a b^{2} d^{2} e^{7} + 3 \, a^{2} b d e^{8} - a^{3} e^{9}\right )}} - \frac {56 \, b^{5} e^{5} x^{5} \mathrm {sgn}\left (b x + a\right ) + 70 \, b^{5} d e^{4} x^{4} \mathrm {sgn}\left (b x + a\right ) + 210 \, a b^{4} e^{5} x^{4} \mathrm {sgn}\left (b x + a\right ) + 56 \, b^{5} d^{2} e^{3} x^{3} \mathrm {sgn}\left (b x + a\right ) + 168 \, a b^{4} d e^{4} x^{3} \mathrm {sgn}\left (b x + a\right ) + 336 \, a^{2} b^{3} e^{5} x^{3} \mathrm {sgn}\left (b x + a\right ) + 28 \, b^{5} d^{3} e^{2} x^{2} \mathrm {sgn}\left (b x + a\right ) + 84 \, a b^{4} d^{2} e^{3} x^{2} \mathrm {sgn}\left (b x + a\right ) + 168 \, a^{2} b^{3} d e^{4} x^{2} \mathrm {sgn}\left (b x + a\right ) + 280 \, a^{3} b^{2} e^{5} x^{2} \mathrm {sgn}\left (b x + a\right ) + 8 \, b^{5} d^{4} e x \mathrm {sgn}\left (b x + a\right ) + 24 \, a b^{4} d^{3} e^{2} x \mathrm {sgn}\left (b x + a\right ) + 48 \, a^{2} b^{3} d^{2} e^{3} x \mathrm {sgn}\left (b x + a\right ) + 80 \, a^{3} b^{2} d e^{4} x \mathrm {sgn}\left (b x + a\right ) + 120 \, a^{4} b e^{5} x \mathrm {sgn}\left (b x + a\right ) + b^{5} d^{5} \mathrm {sgn}\left (b x + a\right ) + 3 \, a b^{4} d^{4} e \mathrm {sgn}\left (b x + a\right ) + 6 \, a^{2} b^{3} d^{3} e^{2} \mathrm {sgn}\left (b x + a\right ) + 10 \, a^{3} b^{2} d^{2} e^{3} \mathrm {sgn}\left (b x + a\right ) + 15 \, a^{4} b d e^{4} \mathrm {sgn}\left (b x + a\right ) + 21 \, a^{5} e^{5} \mathrm {sgn}\left (b x + a\right )}{168 \, {\left (e x + d\right )}^{8} e^{6}} \] Input:

integrate((b^2*x^2+2*a*b*x+a^2)^(5/2)/(e*x+d)^9,x, algorithm="giac")
 

Output:

1/168*b^8*sgn(b*x + a)/(b^3*d^3*e^6 - 3*a*b^2*d^2*e^7 + 3*a^2*b*d*e^8 - a^ 
3*e^9) - 1/168*(56*b^5*e^5*x^5*sgn(b*x + a) + 70*b^5*d*e^4*x^4*sgn(b*x + a 
) + 210*a*b^4*e^5*x^4*sgn(b*x + a) + 56*b^5*d^2*e^3*x^3*sgn(b*x + a) + 168 
*a*b^4*d*e^4*x^3*sgn(b*x + a) + 336*a^2*b^3*e^5*x^3*sgn(b*x + a) + 28*b^5* 
d^3*e^2*x^2*sgn(b*x + a) + 84*a*b^4*d^2*e^3*x^2*sgn(b*x + a) + 168*a^2*b^3 
*d*e^4*x^2*sgn(b*x + a) + 280*a^3*b^2*e^5*x^2*sgn(b*x + a) + 8*b^5*d^4*e*x 
*sgn(b*x + a) + 24*a*b^4*d^3*e^2*x*sgn(b*x + a) + 48*a^2*b^3*d^2*e^3*x*sgn 
(b*x + a) + 80*a^3*b^2*d*e^4*x*sgn(b*x + a) + 120*a^4*b*e^5*x*sgn(b*x + a) 
 + b^5*d^5*sgn(b*x + a) + 3*a*b^4*d^4*e*sgn(b*x + a) + 6*a^2*b^3*d^3*e^2*s 
gn(b*x + a) + 10*a^3*b^2*d^2*e^3*sgn(b*x + a) + 15*a^4*b*d*e^4*sgn(b*x + a 
) + 21*a^5*e^5*sgn(b*x + a))/((e*x + d)^8*e^6)
 

Mupad [B] (verification not implemented)

Time = 5.41 (sec) , antiderivative size = 687, normalized size of antiderivative = 4.61 \[ \int \frac {\left (a^2+2 a b x+b^2 x^2\right )^{5/2}}{(d+e x)^9} \, dx=\frac {\left (\frac {4\,b^5\,d-5\,a\,b^4\,e}{4\,e^6}+\frac {b^5\,d}{4\,e^6}\right )\,\sqrt {a^2+2\,a\,b\,x+b^2\,x^2}}{\left (a+b\,x\right )\,{\left (d+e\,x\right )}^4}-\frac {\left (\frac {5\,a^4\,b\,e^4-10\,a^3\,b^2\,d\,e^3+10\,a^2\,b^3\,d^2\,e^2-5\,a\,b^4\,d^3\,e+b^5\,d^4}{7\,e^6}+\frac {d\,\left (\frac {-10\,a^3\,b^2\,e^4+10\,a^2\,b^3\,d\,e^3-5\,a\,b^4\,d^2\,e^2+b^5\,d^3\,e}{7\,e^6}+\frac {d\,\left (\frac {d\,\left (\frac {b^5\,d}{7\,e^3}-\frac {b^4\,\left (5\,a\,e-b\,d\right )}{7\,e^3}\right )}{e}+\frac {b^3\,\left (10\,a^2\,e^2-5\,a\,b\,d\,e+b^2\,d^2\right )}{7\,e^4}\right )}{e}\right )}{e}\right )\,\sqrt {a^2+2\,a\,b\,x+b^2\,x^2}}{\left (a+b\,x\right )\,{\left (d+e\,x\right )}^7}-\frac {\left (\frac {10\,a^2\,b^3\,e^2-15\,a\,b^4\,d\,e+6\,b^5\,d^2}{5\,e^6}+\frac {d\,\left (\frac {b^5\,d}{5\,e^5}-\frac {b^4\,\left (5\,a\,e-3\,b\,d\right )}{5\,e^5}\right )}{e}\right )\,\sqrt {a^2+2\,a\,b\,x+b^2\,x^2}}{\left (a+b\,x\right )\,{\left (d+e\,x\right )}^5}-\frac {\left (\frac {a^5}{8\,e}-\frac {d\,\left (\frac {5\,a^4\,b}{8\,e}-\frac {d\,\left (\frac {d\,\left (\frac {d\,\left (\frac {5\,a\,b^4}{8\,e}-\frac {b^5\,d}{8\,e^2}\right )}{e}-\frac {5\,a^2\,b^3}{4\,e}\right )}{e}+\frac {5\,a^3\,b^2}{4\,e}\right )}{e}\right )}{e}\right )\,\sqrt {a^2+2\,a\,b\,x+b^2\,x^2}}{\left (a+b\,x\right )\,{\left (d+e\,x\right )}^8}+\frac {\left (\frac {-10\,a^3\,b^2\,e^3+20\,a^2\,b^3\,d\,e^2-15\,a\,b^4\,d^2\,e+4\,b^5\,d^3}{6\,e^6}+\frac {d\,\left (\frac {d\,\left (\frac {b^5\,d}{6\,e^4}-\frac {b^4\,\left (5\,a\,e-2\,b\,d\right )}{6\,e^4}\right )}{e}+\frac {b^3\,\left (10\,a^2\,e^2-10\,a\,b\,d\,e+3\,b^2\,d^2\right )}{6\,e^5}\right )}{e}\right )\,\sqrt {a^2+2\,a\,b\,x+b^2\,x^2}}{\left (a+b\,x\right )\,{\left (d+e\,x\right )}^6}-\frac {b^5\,\sqrt {a^2+2\,a\,b\,x+b^2\,x^2}}{3\,e^6\,\left (a+b\,x\right )\,{\left (d+e\,x\right )}^3} \] Input:

int((a^2 + b^2*x^2 + 2*a*b*x)^(5/2)/(d + e*x)^9,x)
 

Output:

(((4*b^5*d - 5*a*b^4*e)/(4*e^6) + (b^5*d)/(4*e^6))*(a^2 + b^2*x^2 + 2*a*b* 
x)^(1/2))/((a + b*x)*(d + e*x)^4) - (((b^5*d^4 + 5*a^4*b*e^4 - 10*a^3*b^2* 
d*e^3 + 10*a^2*b^3*d^2*e^2 - 5*a*b^4*d^3*e)/(7*e^6) + (d*((b^5*d^3*e - 10* 
a^3*b^2*e^4 - 5*a*b^4*d^2*e^2 + 10*a^2*b^3*d*e^3)/(7*e^6) + (d*((d*((b^5*d 
)/(7*e^3) - (b^4*(5*a*e - b*d))/(7*e^3)))/e + (b^3*(10*a^2*e^2 + b^2*d^2 - 
 5*a*b*d*e))/(7*e^4)))/e))/e)*(a^2 + b^2*x^2 + 2*a*b*x)^(1/2))/((a + b*x)* 
(d + e*x)^7) - (((6*b^5*d^2 + 10*a^2*b^3*e^2 - 15*a*b^4*d*e)/(5*e^6) + (d* 
((b^5*d)/(5*e^5) - (b^4*(5*a*e - 3*b*d))/(5*e^5)))/e)*(a^2 + b^2*x^2 + 2*a 
*b*x)^(1/2))/((a + b*x)*(d + e*x)^5) - ((a^5/(8*e) - (d*((5*a^4*b)/(8*e) - 
 (d*((d*((d*((5*a*b^4)/(8*e) - (b^5*d)/(8*e^2)))/e - (5*a^2*b^3)/(4*e)))/e 
 + (5*a^3*b^2)/(4*e)))/e))/e)*(a^2 + b^2*x^2 + 2*a*b*x)^(1/2))/((a + b*x)* 
(d + e*x)^8) + (((4*b^5*d^3 - 10*a^3*b^2*e^3 + 20*a^2*b^3*d*e^2 - 15*a*b^4 
*d^2*e)/(6*e^6) + (d*((d*((b^5*d)/(6*e^4) - (b^4*(5*a*e - 2*b*d))/(6*e^4)) 
)/e + (b^3*(10*a^2*e^2 + 3*b^2*d^2 - 10*a*b*d*e))/(6*e^5)))/e)*(a^2 + b^2* 
x^2 + 2*a*b*x)^(1/2))/((a + b*x)*(d + e*x)^6) - (b^5*(a^2 + b^2*x^2 + 2*a* 
b*x)^(1/2))/(3*e^6*(a + b*x)*(d + e*x)^3)
 

Reduce [B] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 349, normalized size of antiderivative = 2.34 \[ \int \frac {\left (a^2+2 a b x+b^2 x^2\right )^{5/2}}{(d+e x)^9} \, dx=\frac {-56 b^{5} e^{5} x^{5}-210 a \,b^{4} e^{5} x^{4}-70 b^{5} d \,e^{4} x^{4}-336 a^{2} b^{3} e^{5} x^{3}-168 a \,b^{4} d \,e^{4} x^{3}-56 b^{5} d^{2} e^{3} x^{3}-280 a^{3} b^{2} e^{5} x^{2}-168 a^{2} b^{3} d \,e^{4} x^{2}-84 a \,b^{4} d^{2} e^{3} x^{2}-28 b^{5} d^{3} e^{2} x^{2}-120 a^{4} b \,e^{5} x -80 a^{3} b^{2} d \,e^{4} x -48 a^{2} b^{3} d^{2} e^{3} x -24 a \,b^{4} d^{3} e^{2} x -8 b^{5} d^{4} e x -21 a^{5} e^{5}-15 a^{4} b d \,e^{4}-10 a^{3} b^{2} d^{2} e^{3}-6 a^{2} b^{3} d^{3} e^{2}-3 a \,b^{4} d^{4} e -b^{5} d^{5}}{168 e^{6} \left (e^{8} x^{8}+8 d \,e^{7} x^{7}+28 d^{2} e^{6} x^{6}+56 d^{3} e^{5} x^{5}+70 d^{4} e^{4} x^{4}+56 d^{5} e^{3} x^{3}+28 d^{6} e^{2} x^{2}+8 d^{7} e x +d^{8}\right )} \] Input:

int((b^2*x^2+2*a*b*x+a^2)^(5/2)/(e*x+d)^9,x)
 

Output:

( - 21*a**5*e**5 - 15*a**4*b*d*e**4 - 120*a**4*b*e**5*x - 10*a**3*b**2*d** 
2*e**3 - 80*a**3*b**2*d*e**4*x - 280*a**3*b**2*e**5*x**2 - 6*a**2*b**3*d** 
3*e**2 - 48*a**2*b**3*d**2*e**3*x - 168*a**2*b**3*d*e**4*x**2 - 336*a**2*b 
**3*e**5*x**3 - 3*a*b**4*d**4*e - 24*a*b**4*d**3*e**2*x - 84*a*b**4*d**2*e 
**3*x**2 - 168*a*b**4*d*e**4*x**3 - 210*a*b**4*e**5*x**4 - b**5*d**5 - 8*b 
**5*d**4*e*x - 28*b**5*d**3*e**2*x**2 - 56*b**5*d**2*e**3*x**3 - 70*b**5*d 
*e**4*x**4 - 56*b**5*e**5*x**5)/(168*e**6*(d**8 + 8*d**7*e*x + 28*d**6*e** 
2*x**2 + 56*d**5*e**3*x**3 + 70*d**4*e**4*x**4 + 56*d**3*e**5*x**5 + 28*d* 
*2*e**6*x**6 + 8*d*e**7*x**7 + e**8*x**8))