\(\int (d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2} \, dx\) [202]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 240 \[ \int (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {\left (c d^2-a e^2\right )^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 c^2 d^2 e}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 c d}+\frac {\left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{4 c^2 d^2 (d+e x)}-\frac {\left (c d^2-a e^2\right )^3 \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c} \sqrt {d} (d+e x)}\right )}{8 c^{5/2} d^{5/2} e^{3/2}} \] Output:

1/8*(-a*e^2+c*d^2)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2/e+1/3 
*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d+1/4*(-a*e^2+c*d^2)*(a*d*e+(a* 
e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c^2/d^2/(e*x+d)-1/8*(-a*e^2+c*d^2)^3*arctanh 
(e^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^(1/2)/d^(1/2)/(e*x+d))/ 
c^(5/2)/d^(5/2)/e^(3/2)
 

Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.75 \[ \int (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\sqrt {c} \sqrt {d} \sqrt {e} \left (-3 a^2 e^4+2 a c d e^2 (4 d+e x)+c^2 d^2 \left (3 d^2+14 d e x+8 e^2 x^2\right )\right )-\frac {3 \left (c d^2-a e^2\right )^3 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{24 c^{5/2} d^{5/2} e^{3/2}} \] Input:

Integrate[(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]
 

Output:

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[c]*Sqrt[d]*Sqrt[e]*(-3*a^2*e^4 + 2*a* 
c*d*e^2*(4*d + e*x) + c^2*d^2*(3*d^2 + 14*d*e*x + 8*e^2*x^2)) - (3*(c*d^2 
- a*e^2)^3*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d 
*x])])/(Sqrt[a*e + c*d*x]*Sqrt[d + e*x])))/(24*c^(5/2)*d^(5/2)*e^(3/2))
 

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 219, normalized size of antiderivative = 0.91, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {1160, 1087, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (d+e x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} \, dx\)

\(\Big \downarrow \) 1160

\(\displaystyle \frac {\left (d^2-\frac {a e^2}{c}\right ) \int \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}dx}{2 d}+\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d}\)

\(\Big \downarrow \) 1087

\(\displaystyle \frac {\left (d^2-\frac {a e^2}{c}\right ) \left (\frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{8 c d e}\right )}{2 d}+\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {\left (d^2-\frac {a e^2}{c}\right ) \left (\frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{4 c d e}\right )}{2 d}+\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\left (d^2-\frac {a e^2}{c}\right ) \left (\frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{3/2}}\right )}{2 d}+\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d}\)

Input:

Int[(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]
 

Output:

(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(3*c*d) + ((d^2 - (a*e^2)/c) 
*(((c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2] 
)/(4*c*d*e) - ((c*d^2 - a*e^2)^2*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sq 
rt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^ 
(3/2)*d^(3/2)*e^(3/2))))/(2*d)
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1087
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^p/(2*c*(2*p + 1))), x] - Simp[p*((b^2 - 4*a*c)/(2*c*(2* 
p + 1)))   Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && 
GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[3*p])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 
Maple [A] (verified)

Time = 1.48 (sec) , antiderivative size = 373, normalized size of antiderivative = 1.55

method result size
default \(d \left (\frac {\left (2 c d x e +a \,e^{2}+c \,d^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{8 d e c \sqrt {d e c}}\right )+e \left (\frac {{\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e \right )}^{\frac {3}{2}}}{3 d e c}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (\frac {\left (2 c d x e +a \,e^{2}+c \,d^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{8 d e c \sqrt {d e c}}\right )}{2 d e c}\right )\) \(373\)

Input:

int((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2),x,method=_RETURNVERBOS 
E)
 

Output:

d*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/c/d 
/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*x 
*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2))+ 
e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)/d/e/c-1/2*(a*e^2+c*d^2)/d/e 
/c*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/c/ 
d/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d* 
x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2)) 
)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 532, normalized size of antiderivative = 2.22 \[ \int (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\left [-\frac {3 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \, {\left (8 \, c^{3} d^{3} e^{3} x^{2} + 3 \, c^{3} d^{5} e + 8 \, a c^{2} d^{3} e^{3} - 3 \, a^{2} c d e^{5} + 2 \, {\left (7 \, c^{3} d^{4} e^{2} + a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{96 \, c^{3} d^{3} e^{2}}, \frac {3 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (8 \, c^{3} d^{3} e^{3} x^{2} + 3 \, c^{3} d^{5} e + 8 \, a c^{2} d^{3} e^{3} - 3 \, a^{2} c d e^{5} + 2 \, {\left (7 \, c^{3} d^{4} e^{2} + a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{48 \, c^{3} d^{3} e^{2}}\right ] \] Input:

integrate((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fr 
icas")
 

Output:

[-1/96*(3*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(c*d 
*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d 
*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e 
) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(8*c^3*d^3*e^3*x^2 + 3*c^3*d^5*e + 8* 
a*c^2*d^3*e^3 - 3*a^2*c*d*e^5 + 2*(7*c^3*d^4*e^2 + a*c^2*d^2*e^4)*x)*sqrt( 
c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^2), 1/48*(3*(c^3*d^6 - 
3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-c*d*e)*arctan(1/2*sqrt( 
c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c 
*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(8* 
c^3*d^3*e^3*x^2 + 3*c^3*d^5*e + 8*a*c^2*d^3*e^3 - 3*a^2*c*d*e^5 + 2*(7*c^3 
*d^4*e^2 + a*c^2*d^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/ 
(c^3*d^3*e^2)]
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 571 vs. \(2 (218) = 436\).

Time = 1.19 (sec) , antiderivative size = 571, normalized size of antiderivative = 2.38 \[ \int (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\begin {cases} \left (\frac {e x^{2}}{3} + \frac {x \left (a e^{3} + 2 c d^{2} e - \frac {e \left (\frac {5 a e^{2}}{2} + \frac {5 c d^{2}}{2}\right )}{3}\right )}{2 c d e} + \frac {\frac {4 a d e^{2}}{3} + c d^{3} - \frac {\left (\frac {3 a e^{2}}{2} + \frac {3 c d^{2}}{2}\right ) \left (a e^{3} + 2 c d^{2} e - \frac {e \left (\frac {5 a e^{2}}{2} + \frac {5 c d^{2}}{2}\right )}{3}\right )}{2 c d e}}{c d e}\right ) \sqrt {a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )} + \left (a d^{2} e - \frac {a \left (a e^{3} + 2 c d^{2} e - \frac {e \left (\frac {5 a e^{2}}{2} + \frac {5 c d^{2}}{2}\right )}{3}\right )}{2 c} - \frac {\left (a e^{2} + c d^{2}\right ) \left (\frac {4 a d e^{2}}{3} + c d^{3} - \frac {\left (\frac {3 a e^{2}}{2} + \frac {3 c d^{2}}{2}\right ) \left (a e^{3} + 2 c d^{2} e - \frac {e \left (\frac {5 a e^{2}}{2} + \frac {5 c d^{2}}{2}\right )}{3}\right )}{2 c d e}\right )}{2 c d e}\right ) \left (\begin {cases} \frac {\log {\left (a e^{2} + c d^{2} + 2 c d e x + 2 \sqrt {c d e} \sqrt {a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )} \right )}}{\sqrt {c d e}} & \text {for}\: a d e - \frac {\left (a e^{2} + c d^{2}\right )^{2}}{4 c d e} \neq 0 \\\frac {\left (x - \frac {- a e^{2} - c d^{2}}{2 c d e}\right ) \log {\left (x - \frac {- a e^{2} - c d^{2}}{2 c d e} \right )}}{\sqrt {c d e \left (x - \frac {- a e^{2} - c d^{2}}{2 c d e}\right )^{2}}} & \text {otherwise} \end {cases}\right ) & \text {for}\: c d e \neq 0 \\\frac {2 \left (\frac {c d^{3} \left (a d e + x \left (a e^{2} + c d^{2}\right )\right )^{\frac {3}{2}}}{3 \left (a e^{2} + c d^{2}\right )} + \frac {e \left (a d e + x \left (a e^{2} + c d^{2}\right )\right )^{\frac {5}{2}}}{5 \left (a e^{2} + c d^{2}\right )}\right )}{a e^{2} + c d^{2}} & \text {for}\: a e^{2} + c d^{2} \neq 0 \\\sqrt {a d e} \left (d x + \frac {e x^{2}}{2}\right ) & \text {otherwise} \end {cases} \] Input:

integrate((e*x+d)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)
 

Output:

Piecewise(((e*x**2/3 + x*(a*e**3 + 2*c*d**2*e - e*(5*a*e**2/2 + 5*c*d**2/2 
)/3)/(2*c*d*e) + (4*a*d*e**2/3 + c*d**3 - (3*a*e**2/2 + 3*c*d**2/2)*(a*e** 
3 + 2*c*d**2*e - e*(5*a*e**2/2 + 5*c*d**2/2)/3)/(2*c*d*e))/(c*d*e))*sqrt(a 
*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2)) + (a*d**2*e - a*(a*e**3 + 2*c*d** 
2*e - e*(5*a*e**2/2 + 5*c*d**2/2)/3)/(2*c) - (a*e**2 + c*d**2)*(4*a*d*e**2 
/3 + c*d**3 - (3*a*e**2/2 + 3*c*d**2/2)*(a*e**3 + 2*c*d**2*e - e*(5*a*e**2 
/2 + 5*c*d**2/2)/3)/(2*c*d*e))/(2*c*d*e))*Piecewise((log(a*e**2 + c*d**2 + 
 2*c*d*e*x + 2*sqrt(c*d*e)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))) 
/sqrt(c*d*e), Ne(a*d*e - (a*e**2 + c*d**2)**2/(4*c*d*e), 0)), ((x - (-a*e* 
*2 - c*d**2)/(2*c*d*e))*log(x - (-a*e**2 - c*d**2)/(2*c*d*e))/sqrt(c*d*e*( 
x - (-a*e**2 - c*d**2)/(2*c*d*e))**2), True)), Ne(c*d*e, 0)), (2*(c*d**3*( 
a*d*e + x*(a*e**2 + c*d**2))**(3/2)/(3*(a*e**2 + c*d**2)) + e*(a*d*e + x*( 
a*e**2 + c*d**2))**(5/2)/(5*(a*e**2 + c*d**2)))/(a*e**2 + c*d**2), Ne(a*e* 
*2 + c*d**2, 0)), (sqrt(a*d*e)*(d*x + e*x**2/2), True))
 

Maxima [F(-2)]

Exception generated. \[ \int (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="ma 
xima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.92 \[ \int (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {1}{24} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (2 \, {\left (4 \, e x + \frac {7 \, c^{2} d^{3} e^{2} + a c d e^{4}}{c^{2} d^{2} e^{2}}\right )} x + \frac {3 \, c^{2} d^{4} e + 8 \, a c d^{2} e^{3} - 3 \, a^{2} e^{5}}{c^{2} d^{2} e^{2}}\right )} + \frac {{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{16 \, \sqrt {c d e} c^{2} d^{2} e} \] Input:

integrate((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="gi 
ac")
 

Output:

1/24*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*(4*e*x + (7*c^2*d^3*e^ 
2 + a*c*d*e^4)/(c^2*d^2*e^2))*x + (3*c^2*d^4*e + 8*a*c*d^2*e^3 - 3*a^2*e^5 
)/(c^2*d^2*e^2)) + 1/16*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3 
*e^6)*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x 
^2 + c*d^2*x + a*e^2*x + a*d*e))))/(sqrt(c*d*e)*c^2*d^2*e)
 

Mupad [B] (verification not implemented)

Time = 5.84 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.28 \[ \int (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=d\,\left (\frac {x}{2}+\frac {c\,d^2+a\,e^2}{4\,c\,d\,e}\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}-\frac {d\,\ln \left (2\,\sqrt {\left (a\,e+c\,d\,x\right )\,\left (d+e\,x\right )}\,\sqrt {c\,d\,e}+a\,e^2+c\,d^2+2\,c\,d\,e\,x\right )\,\left (\frac {{\left (c\,d^2+a\,e^2\right )}^2}{4}-a\,c\,d^2\,e^2\right )}{2\,{\left (c\,d\,e\right )}^{3/2}}+\frac {e\,\ln \left (2\,\sqrt {\left (a\,e+c\,d\,x\right )\,\left (d+e\,x\right )}\,\sqrt {c\,d\,e}+a\,e^2+c\,d^2+2\,c\,d\,e\,x\right )\,\left ({\left (c\,d^2+a\,e^2\right )}^3-4\,a\,c\,d^2\,e^2\,\left (c\,d^2+a\,e^2\right )\right )}{16\,{\left (c\,d\,e\right )}^{5/2}}+\frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (8\,c\,d\,e\,\left (c\,d\,e\,x^2+a\,d\,e\right )-3\,{\left (c\,d^2+a\,e^2\right )}^2+2\,c\,d\,e\,x\,\left (c\,d^2+a\,e^2\right )\right )}{24\,c^2\,d^2\,e} \] Input:

int((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2),x)
 

Output:

d*(x/2 + (a*e^2 + c*d^2)/(4*c*d*e))*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2 
)^(1/2) - (d*log(2*((a*e + c*d*x)*(d + e*x))^(1/2)*(c*d*e)^(1/2) + a*e^2 + 
 c*d^2 + 2*c*d*e*x)*((a*e^2 + c*d^2)^2/4 - a*c*d^2*e^2))/(2*(c*d*e)^(3/2)) 
 + (e*log(2*((a*e + c*d*x)*(d + e*x))^(1/2)*(c*d*e)^(1/2) + a*e^2 + c*d^2 
+ 2*c*d*e*x)*((a*e^2 + c*d^2)^3 - 4*a*c*d^2*e^2*(a*e^2 + c*d^2)))/(16*(c*d 
*e)^(5/2)) + ((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*(8*c*d*e*(a*d* 
e + c*d*e*x^2) - 3*(a*e^2 + c*d^2)^2 + 2*c*d*e*x*(a*e^2 + c*d^2)))/(24*c^2 
*d^2*e)
 

Reduce [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 400, normalized size of antiderivative = 1.67 \[ \int (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {-3 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a^{2} c d \,e^{5}+8 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a \,c^{2} d^{3} e^{3}+2 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a \,c^{2} d^{2} e^{4} x +3 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{3} d^{5} e +14 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{3} d^{4} e^{2} x +8 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{3} d^{3} e^{3} x^{2}+3 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a^{3} e^{6}-9 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a^{2} c \,d^{2} e^{4}+9 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a \,c^{2} d^{4} e^{2}-3 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c^{3} d^{6}}{24 c^{3} d^{3} e^{2}} \] Input:

int((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)
 

Output:

( - 3*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2*c*d*e**5 + 8*sqrt(d + e*x)*sqrt 
(a*e + c*d*x)*a*c**2*d**3*e**3 + 2*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a*c**2* 
d**2*e**4*x + 3*sqrt(d + e*x)*sqrt(a*e + c*d*x)*c**3*d**5*e + 14*sqrt(d + 
e*x)*sqrt(a*e + c*d*x)*c**3*d**4*e**2*x + 8*sqrt(d + e*x)*sqrt(a*e + c*d*x 
)*c**3*d**3*e**3*x**2 + 3*sqrt(e)*sqrt(d)*sqrt(c)*log((sqrt(e)*sqrt(a*e + 
c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*a**3*e**6 - 
 9*sqrt(e)*sqrt(d)*sqrt(c)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c 
)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*a**2*c*d**2*e**4 + 9*sqrt(e)*sqrt( 
d)*sqrt(c)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x)) 
/sqrt(a*e**2 - c*d**2))*a*c**2*d**4*e**2 - 3*sqrt(e)*sqrt(d)*sqrt(c)*log(( 
sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c 
*d**2))*c**3*d**6)/(24*c**3*d**3*e**2)