\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^2} \, dx\) [214]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 174 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx=\frac {3}{4} \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 e (d+e x)}+\frac {3 \left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c} \sqrt {d} (d+e x)}\right )}{4 \sqrt {c} \sqrt {d} e^{5/2}} \] Output:

3/4*(a-c*d^2/e^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*d*e+(a*e^ 
2+c*d^2)*x+c*d*e*x^2)^(3/2)/e/(e*x+d)+3/4*(-a*e^2+c*d^2)^2*arctanh(e^(1/2) 
*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^(1/2)/d^(1/2)/(e*x+d))/c^(1/2)/ 
d^(1/2)/e^(5/2)
 

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.86 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx=\frac {\sqrt {e} (a e+c d x) (d+e x) \left (5 a e^2+c d (-3 d+2 e x)\right )+\frac {3 \left (c d^2-a e^2\right )^2 \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{\sqrt {c} \sqrt {d}}}{4 e^{5/2} \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^2,x]
 

Output:

(Sqrt[e]*(a*e + c*d*x)*(d + e*x)*(5*a*e^2 + c*d*(-3*d + 2*e*x)) + (3*(c*d^ 
2 - a*e^2)^2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt 
[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])])/(Sqrt[c]*Sqrt[d]))/(4*e^(5/2)*Sqr 
t[(a*e + c*d*x)*(d + e*x)])
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.11, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {1131, 1131, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx\)

\(\Big \downarrow \) 1131

\(\displaystyle \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 e (d+e x)}-\frac {3 \left (c d^2-a e^2\right ) \int \frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{d+e x}dx}{4 e}\)

\(\Big \downarrow \) 1131

\(\displaystyle \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 e (d+e x)}-\frac {3 \left (c d^2-a e^2\right ) \left (\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e}-\frac {\left (c d^2-a e^2\right ) \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 e}\right )}{4 e}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 e (d+e x)}-\frac {3 \left (c d^2-a e^2\right ) \left (\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e}-\frac {\left (c d^2-a e^2\right ) \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{e}\right )}{4 e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 e (d+e x)}-\frac {3 \left (c d^2-a e^2\right ) \left (\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e}-\frac {\left (c d^2-a e^2\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {c} \sqrt {d} e^{3/2}}\right )}{4 e}\)

Input:

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^2,x]
 

Output:

(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(2*e*(d + e*x)) - (3*(c*d^2 
- a*e^2)*(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/e - ((c*d^2 - a*e^2) 
*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e 
 + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[c]*Sqrt[d]*e^(3/2))))/(4*e)
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1131
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*((a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x 
] - Simp[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1)))   Int[(d + e*x)^(m + 1)*(a + 
 b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b 
*d*e + a*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && Ne 
Q[m + 2*p + 1, 0] && IntegerQ[2*p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(310\) vs. \(2(150)=300\).

Time = 1.90 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.79

method result size
default \(\frac {\frac {2 \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{2}}-\frac {6 d e c \left (\frac {\left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{3}+\frac {\left (a \,e^{2}-c \,d^{2}\right ) \left (\frac {\left (2 d e c \left (x +\frac {d}{e}\right )+a \,e^{2}-c \,d^{2}\right ) \sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{4 d e c}-\frac {\left (a \,e^{2}-c \,d^{2}\right )^{2} \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+d e c \left (x +\frac {d}{e}\right )}{\sqrt {d e c}}+\sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{8 d e c \sqrt {d e c}}\right )}{2}\right )}{a \,e^{2}-c \,d^{2}}}{e^{2}}\) \(311\)

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)/(e*x+d)^2,x,method=_RETURNVERB 
OSE)
 

Output:

1/e^2*(2/(a*e^2-c*d^2)/(x+d/e)^2*(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^( 
5/2)-6*d*e*c/(a*e^2-c*d^2)*(1/3*(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3 
/2)+1/2*(a*e^2-c*d^2)*(1/4*(2*d*e*c*(x+d/e)+a*e^2-c*d^2)/d/e/c*(d*e*c*(x+d 
/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)-1/8*(a*e^2-c*d^2)^2/d/e/c*ln((1/2*a*e^2 
-1/2*c*d^2+d*e*c*(x+d/e))/(d*e*c)^(1/2)+(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+ 
d/e))^(1/2))/(d*e*c)^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 418, normalized size of antiderivative = 2.40 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx=\left [\frac {3 \, {\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \, {\left (2 \, c^{2} d^{2} e^{2} x - 3 \, c^{2} d^{3} e + 5 \, a c d e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{16 \, c d e^{3}}, -\frac {3 \, {\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) - 2 \, {\left (2 \, c^{2} d^{2} e^{2} x - 3 \, c^{2} d^{3} e + 5 \, a c d e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{8 \, c d e^{3}}\right ] \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^2,x, algorithm=" 
fricas")
 

Output:

[1/16*(3*(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(c*d*e)*log(8*c^2*d^2*e^2 
*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d 
^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a* 
c*d*e^3)*x) + 4*(2*c^2*d^2*e^2*x - 3*c^2*d^3*e + 5*a*c*d*e^3)*sqrt(c*d*e*x 
^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^3), -1/8*(3*(c^2*d^4 - 2*a*c*d^2*e 
^2 + a^2*e^4)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a* 
e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^ 
2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) - 2*(2*c^2*d^2*e^2*x - 3*c^2*d^3*e + 5 
*a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^3)]
 

Sympy [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx=\int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{\left (d + e x\right )^{2}}\, dx \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**2,x)
 

Output:

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/(d + e*x)**2, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^2,x, algorithm=" 
maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e*(a*e^2-c*d^2)>0)', see `assume 
?` for mor
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 471 vs. \(2 (150) = 300\).

Time = 0.29 (sec) , antiderivative size = 471, normalized size of antiderivative = 2.71 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx=-\frac {1}{4} \, {\left (\frac {3 \, {\left (c^{2} d^{4} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - 2 \, a c d^{2} e^{2} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) + a^{2} e^{4} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right )\right )} \arctan \left (\frac {\sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}}}{\sqrt {-c d e}}\right )}{\sqrt {-c d e} e^{2} {\left | e \right |}} + \frac {3 \, \sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}} c^{3} d^{5} e \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - 6 \, \sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}} a c^{2} d^{3} e^{3} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) + 3 \, \sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}} a^{2} c d e^{5} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - 5 \, {\left (c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}\right )}^{\frac {3}{2}} c^{2} d^{4} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) + 10 \, {\left (c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}\right )}^{\frac {3}{2}} a c d^{2} e^{2} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - 5 \, {\left (c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}\right )}^{\frac {3}{2}} a^{2} e^{4} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right )}{{\left (\frac {c d^{2} e}{e x + d} - \frac {a e^{3}}{e x + d}\right )}^{2} e^{2} {\left | e \right |}}\right )} {\left | e \right |} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^2,x, algorithm=" 
giac")
 

Output:

-1/4*(3*(c^2*d^4*sgn(1/(e*x + d))*sgn(e) - 2*a*c*d^2*e^2*sgn(1/(e*x + d))* 
sgn(e) + a^2*e^4*sgn(1/(e*x + d))*sgn(e))*arctan(sqrt(c*d*e - c*d^2*e/(e*x 
 + d) + a*e^3/(e*x + d))/sqrt(-c*d*e))/(sqrt(-c*d*e)*e^2*abs(e)) + (3*sqrt 
(c*d*e - c*d^2*e/(e*x + d) + a*e^3/(e*x + d))*c^3*d^5*e*sgn(1/(e*x + d))*s 
gn(e) - 6*sqrt(c*d*e - c*d^2*e/(e*x + d) + a*e^3/(e*x + d))*a*c^2*d^3*e^3* 
sgn(1/(e*x + d))*sgn(e) + 3*sqrt(c*d*e - c*d^2*e/(e*x + d) + a*e^3/(e*x + 
d))*a^2*c*d*e^5*sgn(1/(e*x + d))*sgn(e) - 5*(c*d*e - c*d^2*e/(e*x + d) + a 
*e^3/(e*x + d))^(3/2)*c^2*d^4*sgn(1/(e*x + d))*sgn(e) + 10*(c*d*e - c*d^2* 
e/(e*x + d) + a*e^3/(e*x + d))^(3/2)*a*c*d^2*e^2*sgn(1/(e*x + d))*sgn(e) - 
 5*(c*d*e - c*d^2*e/(e*x + d) + a*e^3/(e*x + d))^(3/2)*a^2*e^4*sgn(1/(e*x 
+ d))*sgn(e))/((c*d^2*e/(e*x + d) - a*e^3/(e*x + d))^2*e^2*abs(e)))*abs(e)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (d+e\,x\right )}^2} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(d + e*x)^2,x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(d + e*x)^2, x)
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.45 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx=\frac {5 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a c d \,e^{3}-3 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{2} d^{3} e +2 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{2} d^{2} e^{2} x +3 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a^{2} e^{4}-6 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a c \,d^{2} e^{2}+3 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c^{2} d^{4}}{4 c d \,e^{3}} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^2,x)
 

Output:

(5*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a*c*d*e**3 - 3*sqrt(d + e*x)*sqrt(a*e + 
 c*d*x)*c**2*d**3*e + 2*sqrt(d + e*x)*sqrt(a*e + c*d*x)*c**2*d**2*e**2*x + 
 3*sqrt(e)*sqrt(d)*sqrt(c)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c 
)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*a**2*e**4 - 6*sqrt(e)*sqrt(d)*sqrt 
(c)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a 
*e**2 - c*d**2))*a*c*d**2*e**2 + 3*sqrt(e)*sqrt(d)*sqrt(c)*log((sqrt(e)*sq 
rt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*c* 
*2*d**4)/(4*c*d*e**3)