\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^6} \, dx\) [229]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 206 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^6} \, dx=-\frac {2 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3 (d+e x)}-\frac {2 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^3}-\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{5 e (d+e x)^5}+\frac {2 c^{5/2} d^{5/2} \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c} \sqrt {d} (d+e x)}\right )}{e^{7/2}} \] Output:

-2*c^2*d^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e^3/(e*x+d)-2/3*c*d*(a* 
d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/e^2/(e*x+d)^3-2/5*(a*d*e+(a*e^2+c*d^2 
)*x+c*d*e*x^2)^(5/2)/e/(e*x+d)^5+2*c^(5/2)*d^(5/2)*arctanh(e^(1/2)*(a*d*e+ 
(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^(1/2)/d^(1/2)/(e*x+d))/e^(7/2)
 

Mathematica [A] (verified)

Time = 0.48 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.84 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^6} \, dx=\frac {2 ((a e+c d x) (d+e x))^{5/2} \left (-\frac {\sqrt {e} \left (3 a^2 e^4+a c d e^2 (5 d+11 e x)+c^2 d^2 \left (15 d^2+35 d e x+23 e^2 x^2\right )\right )}{(a e+c d x)^2 (d+e x)^5}+\frac {15 c^{5/2} d^{5/2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{(a e+c d x)^{5/2} (d+e x)^{5/2}}\right )}{15 e^{7/2}} \] Input:

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^6,x]
 

Output:

(2*((a*e + c*d*x)*(d + e*x))^(5/2)*(-((Sqrt[e]*(3*a^2*e^4 + a*c*d*e^2*(5*d 
 + 11*e*x) + c^2*d^2*(15*d^2 + 35*d*e*x + 23*e^2*x^2)))/((a*e + c*d*x)^2*( 
d + e*x)^5)) + (15*c^(5/2)*d^(5/2)*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x]) 
/(Sqrt[e]*Sqrt[a*e + c*d*x])])/((a*e + c*d*x)^(5/2)*(d + e*x)^(5/2))))/(15 
*e^(7/2))
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {1130, 1130, 1125, 25, 27, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{(d+e x)^6} \, dx\)

\(\Big \downarrow \) 1130

\(\displaystyle \frac {c d \int \frac {\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/2}}{(d+e x)^4}dx}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 e (d+e x)^5}\)

\(\Big \downarrow \) 1130

\(\displaystyle \frac {c d \left (\frac {c d \int \frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{(d+e x)^2}dx}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e (d+e x)^3}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 e (d+e x)^5}\)

\(\Big \downarrow \) 1125

\(\displaystyle \frac {c d \left (\frac {c d \left (-\frac {\int -\frac {c d e}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{e^2}-\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x)}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e (d+e x)^3}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 e (d+e x)^5}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {c d \left (\frac {c d \left (\frac {\int \frac {c d e}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{e^2}-\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x)}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e (d+e x)^3}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 e (d+e x)^5}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {c d \left (\frac {c d \left (\frac {c d \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{e}-\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x)}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e (d+e x)^3}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 e (d+e x)^5}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {c d \left (\frac {c d \left (\frac {2 c d \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{e}-\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x)}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e (d+e x)^3}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 e (d+e x)^5}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {c d \left (\frac {c d \left (\frac {\sqrt {c} \sqrt {d} \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{e^{3/2}}-\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x)}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e (d+e x)^3}\right )}{e}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 e (d+e x)^5}\)

Input:

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^6,x]
 

Output:

(-2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(5*e*(d + e*x)^5) + (c* 
d*((-2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*e*(d + e*x)^3) + 
(c*d*((-2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e*(d + e*x)) + (Sq 
rt[c]*Sqrt[d]*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[ 
e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/e^(3/2)))/e))/e
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1125
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_ 
Symbol] :> Simp[-2*e^(2*m + 3)*(Sqrt[a + b*x + c*x^2]/((-2*c*d + b*e)^(m + 
2)*(d + e*x))), x] - Simp[e^(2*m + 2)   Int[(1/Sqrt[a + b*x + c*x^2])*Expan 
dToSum[((-2*c*d + b*e)^(-m - 1) - ((-c)*d + b*e + c*e*x)^(-m - 1))/(d + e*x 
), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] 
 && ILtQ[m, 0] && EqQ[m + p, -3/2]
 

rule 1130
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*((a + b*x + c*x^2)^p/(e*(m + p + 1))), x] 
- Simp[c*(p/(e^2*(m + p + 1)))   Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p 
 - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] 
 && GtQ[p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1, 0] & 
& IntegerQ[2*p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(731\) vs. \(2(182)=364\).

Time = 4.16 (sec) , antiderivative size = 732, normalized size of antiderivative = 3.55

method result size
default \(\frac {-\frac {2 \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{5 \left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{6}}+\frac {2 d e c \left (-\frac {2 \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{3 \left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{5}}+\frac {4 d e c \left (-\frac {2 \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{4}}+\frac {6 d e c \left (\frac {2 \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{3}}-\frac {8 d e c \left (\frac {2 \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{3 \left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{2}}-\frac {10 d e c \left (\frac {\left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+\frac {\left (a \,e^{2}-c \,d^{2}\right ) \left (\frac {\left (2 d e c \left (x +\frac {d}{e}\right )+a \,e^{2}-c \,d^{2}\right ) \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 d e c}-\frac {3 \left (a \,e^{2}-c \,d^{2}\right )^{2} \left (\frac {\left (2 d e c \left (x +\frac {d}{e}\right )+a \,e^{2}-c \,d^{2}\right ) \sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{4 d e c}-\frac {\left (a \,e^{2}-c \,d^{2}\right )^{2} \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+d e c \left (x +\frac {d}{e}\right )}{\sqrt {d e c}}+\sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{8 d e c \sqrt {d e c}}\right )}{16 d e c}\right )}{2}\right )}{3 \left (a \,e^{2}-c \,d^{2}\right )}\right )}{a \,e^{2}-c \,d^{2}}\right )}{a \,e^{2}-c \,d^{2}}\right )}{3 \left (a \,e^{2}-c \,d^{2}\right )}\right )}{5 \left (a \,e^{2}-c \,d^{2}\right )}}{e^{6}}\) \(732\)

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(5/2)/(e*x+d)^6,x,method=_RETURNVERB 
OSE)
 

Output:

1/e^6*(-2/5/(a*e^2-c*d^2)/(x+d/e)^6*(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e) 
)^(7/2)+2/5*d*e*c/(a*e^2-c*d^2)*(-2/3/(a*e^2-c*d^2)/(x+d/e)^5*(d*e*c*(x+d/ 
e)^2+(a*e^2-c*d^2)*(x+d/e))^(7/2)+4/3*d*e*c/(a*e^2-c*d^2)*(-2/(a*e^2-c*d^2 
)/(x+d/e)^4*(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(7/2)+6*d*e*c/(a*e^2-c 
*d^2)*(2/(a*e^2-c*d^2)/(x+d/e)^3*(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^( 
7/2)-8*d*e*c/(a*e^2-c*d^2)*(2/3/(a*e^2-c*d^2)/(x+d/e)^2*(d*e*c*(x+d/e)^2+( 
a*e^2-c*d^2)*(x+d/e))^(7/2)-10/3*d*e*c/(a*e^2-c*d^2)*(1/5*(d*e*c*(x+d/e)^2 
+(a*e^2-c*d^2)*(x+d/e))^(5/2)+1/2*(a*e^2-c*d^2)*(1/8*(2*d*e*c*(x+d/e)+a*e^ 
2-c*d^2)/d/e/c*(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3/2)-3/16*(a*e^2-c 
*d^2)^2/d/e/c*(1/4*(2*d*e*c*(x+d/e)+a*e^2-c*d^2)/d/e/c*(d*e*c*(x+d/e)^2+(a 
*e^2-c*d^2)*(x+d/e))^(1/2)-1/8*(a*e^2-c*d^2)^2/d/e/c*ln((1/2*a*e^2-1/2*c*d 
^2+d*e*c*(x+d/e))/(d*e*c)^(1/2)+(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1 
/2))/(d*e*c)^(1/2)))))))))
 

Fricas [A] (verification not implemented)

Time = 0.96 (sec) , antiderivative size = 578, normalized size of antiderivative = 2.81 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^6} \, dx=\left [\frac {15 \, {\left (c^{2} d^{2} e^{3} x^{3} + 3 \, c^{2} d^{3} e^{2} x^{2} + 3 \, c^{2} d^{4} e x + c^{2} d^{5}\right )} \sqrt {\frac {c d}{e}} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, {\left (2 \, c d e^{2} x + c d^{2} e + a e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {\frac {c d}{e}} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \, {\left (23 \, c^{2} d^{2} e^{2} x^{2} + 15 \, c^{2} d^{4} + 5 \, a c d^{2} e^{2} + 3 \, a^{2} e^{4} + {\left (35 \, c^{2} d^{3} e + 11 \, a c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{30 \, {\left (e^{6} x^{3} + 3 \, d e^{5} x^{2} + 3 \, d^{2} e^{4} x + d^{3} e^{3}\right )}}, -\frac {15 \, {\left (c^{2} d^{2} e^{3} x^{3} + 3 \, c^{2} d^{3} e^{2} x^{2} + 3 \, c^{2} d^{4} e x + c^{2} d^{5}\right )} \sqrt {-\frac {c d}{e}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-\frac {c d}{e}}}{2 \, {\left (c^{2} d^{2} e x^{2} + a c d^{2} e + {\left (c^{2} d^{3} + a c d e^{2}\right )} x\right )}}\right ) + 2 \, {\left (23 \, c^{2} d^{2} e^{2} x^{2} + 15 \, c^{2} d^{4} + 5 \, a c d^{2} e^{2} + 3 \, a^{2} e^{4} + {\left (35 \, c^{2} d^{3} e + 11 \, a c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{15 \, {\left (e^{6} x^{3} + 3 \, d e^{5} x^{2} + 3 \, d^{2} e^{4} x + d^{3} e^{3}\right )}}\right ] \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^6,x, algorithm=" 
fricas")
 

Output:

[1/30*(15*(c^2*d^2*e^3*x^3 + 3*c^2*d^3*e^2*x^2 + 3*c^2*d^4*e*x + c^2*d^5)* 
sqrt(c*d/e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4* 
(2*c*d*e^2*x + c*d^2*e + a*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x 
)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(23*c^2*d^2*e^2*x^2 + 15* 
c^2*d^4 + 5*a*c*d^2*e^2 + 3*a^2*e^4 + (35*c^2*d^3*e + 11*a*c*d*e^3)*x)*sqr 
t(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(e^6*x^3 + 3*d*e^5*x^2 + 3*d^2*e 
^4*x + d^3*e^3), -1/15*(15*(c^2*d^2*e^3*x^3 + 3*c^2*d^3*e^2*x^2 + 3*c^2*d^ 
4*e*x + c^2*d^5)*sqrt(-c*d/e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + 
 a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^2 + a*c*d 
^2*e + (c^2*d^3 + a*c*d*e^2)*x)) + 2*(23*c^2*d^2*e^2*x^2 + 15*c^2*d^4 + 5* 
a*c*d^2*e^2 + 3*a^2*e^4 + (35*c^2*d^3*e + 11*a*c*d*e^3)*x)*sqrt(c*d*e*x^2 
+ a*d*e + (c*d^2 + a*e^2)*x))/(e^6*x^3 + 3*d*e^5*x^2 + 3*d^2*e^4*x + d^3*e 
^3)]
 

Sympy [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^6} \, dx=\int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {5}{2}}}{\left (d + e x\right )^{6}}\, dx \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**6,x)
 

Output:

Integral(((d + e*x)*(a*e + c*d*x))**(5/2)/(d + e*x)**6, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^6} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^6,x, algorithm=" 
maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e*(a*e^2-c*d^2)>0)', see `assume 
?` for mor
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^6} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^6,x, algorithm=" 
giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%{[%%%{1,[0,0,15]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[6,6 
]%%%}+%%%
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^6} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{{\left (d+e\,x\right )}^6} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^6,x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^6, x)
                                                                                    
                                                                                    
 

Reduce [B] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 491, normalized size of antiderivative = 2.38 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^6} \, dx=\frac {-\frac {2 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a^{2} e^{5}}{5}-\frac {2 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a c \,d^{2} e^{3}}{3}-\frac {22 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a c d \,e^{4} x}{15}-2 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{2} d^{4} e -\frac {14 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{2} d^{3} e^{2} x}{3}-\frac {46 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{2} d^{2} e^{3} x^{2}}{15}+2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c^{2} d^{5}+6 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c^{2} d^{4} e x +6 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c^{2} d^{3} e^{2} x^{2}+2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c^{2} d^{2} e^{3} x^{3}+\frac {2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, c^{2} d^{5}}{3}+2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, c^{2} d^{4} e x +2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, c^{2} d^{3} e^{2} x^{2}+\frac {2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, c^{2} d^{2} e^{3} x^{3}}{3}}{e^{4} \left (e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}\right )} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^6,x)
 

Output:

(2*( - 3*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2*e**5 - 5*sqrt(d + e*x)*sqrt( 
a*e + c*d*x)*a*c*d**2*e**3 - 11*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a*c*d*e**4 
*x - 15*sqrt(d + e*x)*sqrt(a*e + c*d*x)*c**2*d**4*e - 35*sqrt(d + e*x)*sqr 
t(a*e + c*d*x)*c**2*d**3*e**2*x - 23*sqrt(d + e*x)*sqrt(a*e + c*d*x)*c**2* 
d**2*e**3*x**2 + 15*sqrt(e)*sqrt(d)*sqrt(c)*log((sqrt(e)*sqrt(a*e + c*d*x) 
 + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*c**2*d**5 + 45*sq 
rt(e)*sqrt(d)*sqrt(c)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqr 
t(d + e*x))/sqrt(a*e**2 - c*d**2))*c**2*d**4*e*x + 45*sqrt(e)*sqrt(d)*sqrt 
(c)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a 
*e**2 - c*d**2))*c**2*d**3*e**2*x**2 + 15*sqrt(e)*sqrt(d)*sqrt(c)*log((sqr 
t(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d* 
*2))*c**2*d**2*e**3*x**3 + 5*sqrt(e)*sqrt(d)*sqrt(c)*c**2*d**5 + 15*sqrt(e 
)*sqrt(d)*sqrt(c)*c**2*d**4*e*x + 15*sqrt(e)*sqrt(d)*sqrt(c)*c**2*d**3*e** 
2*x**2 + 5*sqrt(e)*sqrt(d)*sqrt(c)*c**2*d**2*e**3*x**3))/(15*e**4*(d**3 + 
3*d**2*e*x + 3*d*e**2*x**2 + e**3*x**3))