\(\int \frac {\sqrt {d+e x}}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [318]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 139 \[ \int \frac {\sqrt {d+e x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d+e x}}{\left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {2 \sqrt {e} \arctan \left (\frac {\sqrt {c d^2-a e^2} \sqrt {d+e x}}{\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\left (c d^2-a e^2\right )^{3/2}} \] Output:

-2*(e*x+d)^(1/2)/(-a*e^2+c*d^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+2* 
e^(1/2)*arctan(1/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*(-a*e^2+c 
*d^2)^(1/2)*(e*x+d)^(1/2))/(-a*e^2+c*d^2)^(3/2)
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.83 \[ \int \frac {\sqrt {d+e x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d+e x} \left (\sqrt {c d^2-a e^2}+\sqrt {e} \sqrt {a e+c d x} \arctan \left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d^2-a e^2}}\right )\right )}{\left (c d^2-a e^2\right )^{3/2} \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[Sqrt[d + e*x]/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]
 

Output:

(-2*Sqrt[d + e*x]*(Sqrt[c*d^2 - a*e^2] + Sqrt[e]*Sqrt[a*e + c*d*x]*ArcTan[ 
(Sqrt[e]*Sqrt[a*e + c*d*x])/Sqrt[c*d^2 - a*e^2]]))/((c*d^2 - a*e^2)^(3/2)* 
Sqrt[(a*e + c*d*x)*(d + e*x)])
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1132, 1136, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d+e x}}{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1132

\(\displaystyle -\frac {e \int \frac {1}{\sqrt {d+e x} \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c d^2-a e^2}-\frac {2 \sqrt {d+e x}}{\left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 1136

\(\displaystyle -\frac {2 e^2 \int \frac {1}{\frac {\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}+\left (c d^2-a e^2\right ) e}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{c d^2-a e^2}-\frac {2 \sqrt {d+e x}}{\left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {2 \sqrt {e} \arctan \left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{\left (c d^2-a e^2\right )^{3/2}}-\frac {2 \sqrt {d+e x}}{\left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

Input:

Int[Sqrt[d + e*x]/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]
 

Output:

(-2*Sqrt[d + e*x])/((c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e 
*x^2]) - (2*Sqrt[e]*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e 
*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/(c*d^2 - a*e^2)^(3/2)
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1132
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(2*c*d - b*e)*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(e*(p + 
 1)*(b^2 - 4*a*c))), x] - Simp[(2*c*d - b*e)*((m + 2*p + 2)/((p + 1)*(b^2 - 
 4*a*c)))   Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; Free 
Q[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && LtQ 
[0, m, 1] && IntegerQ[2*p]
 

rule 1136
Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x 
_Symbol] :> Simp[2*e   Subst[Int[1/(2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + 
 b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 
- b*d*e + a*e^2, 0]
 
Maple [A] (verified)

Time = 1.07 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.91

method result size
default \(-\frac {2 \sqrt {\left (e x +d \right ) \left (c d x +a e \right )}\, \left (e \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right ) \sqrt {c d x +a e}-\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\right )}{\sqrt {e x +d}\, \left (c d x +a e \right ) \left (a \,e^{2}-c \,d^{2}\right ) \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\) \(126\)

Input:

int((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2),x,method=_RETURN 
VERBOSE)
 

Output:

-2/(e*x+d)^(1/2)*((e*x+d)*(c*d*x+a*e))^(1/2)*(e*arctanh(e*(c*d*x+a*e)^(1/2 
)/((a*e^2-c*d^2)*e)^(1/2))*(c*d*x+a*e)^(1/2)-((a*e^2-c*d^2)*e)^(1/2))/(c*d 
*x+a*e)/(a*e^2-c*d^2)/((a*e^2-c*d^2)*e)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 500, normalized size of antiderivative = 3.60 \[ \int \frac {\sqrt {d+e x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\left [-\frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-\frac {e}{c d^{2} - a e^{2}}} \log \left (-\frac {c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d^{2} - a e^{2}\right )} \sqrt {e x + d} \sqrt {-\frac {e}{c d^{2} - a e^{2}}}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{a c d^{3} e - a^{2} d e^{3} + {\left (c^{2} d^{3} e - a c d e^{3}\right )} x^{2} + {\left (c^{2} d^{4} - a^{2} e^{4}\right )} x}, -\frac {2 \, {\left ({\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {\frac {e}{c d^{2} - a e^{2}}} \arctan \left (-\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d^{2} - a e^{2}\right )} \sqrt {e x + d} \sqrt {\frac {e}{c d^{2} - a e^{2}}}}{c d e^{2} x^{2} + a d e^{2} + {\left (c d^{2} e + a e^{3}\right )} x}\right ) + \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}\right )}}{a c d^{3} e - a^{2} d e^{3} + {\left (c^{2} d^{3} e - a c d e^{3}\right )} x^{2} + {\left (c^{2} d^{4} - a^{2} e^{4}\right )} x}\right ] \] Input:

integrate((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorit 
hm="fricas")
 

Output:

[-((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-e/(c*d^2 - a*e^2))*log(-( 
c*d*e^2*x^2 + 2*a*e^3*x - c*d^3 + 2*a*d*e^2 + 2*sqrt(c*d*e*x^2 + a*d*e + ( 
c*d^2 + a*e^2)*x)*(c*d^2 - a*e^2)*sqrt(e*x + d)*sqrt(-e/(c*d^2 - a*e^2)))/ 
(e^2*x^2 + 2*d*e*x + d^2)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x) 
*sqrt(e*x + d))/(a*c*d^3*e - a^2*d*e^3 + (c^2*d^3*e - a*c*d*e^3)*x^2 + (c^ 
2*d^4 - a^2*e^4)*x), -2*((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e/(c 
*d^2 - a*e^2))*arctan(-sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d^2 
- a*e^2)*sqrt(e*x + d)*sqrt(e/(c*d^2 - a*e^2))/(c*d*e^2*x^2 + a*d*e^2 + (c 
*d^2*e + a*e^3)*x)) + sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x 
 + d))/(a*c*d^3*e - a^2*d*e^3 + (c^2*d^3*e - a*c*d*e^3)*x^2 + (c^2*d^4 - a 
^2*e^4)*x)]
 

Sympy [F]

\[ \int \frac {\sqrt {d+e x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {d + e x}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)
 

Output:

Integral(sqrt(d + e*x)/((d + e*x)*(a*e + c*d*x))**(3/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {d+e x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {e x + d}}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorit 
hm="maxima")
 

Output:

integrate(sqrt(e*x + d)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2), x)
 

Giac [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt {d+e x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-2 \, e {\left (\frac {e \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}} {\left (c d^{2} {\left | e \right |} - a e^{2} {\left | e \right |}\right )}} + \frac {e}{\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} {\left (c d^{2} {\left | e \right |} - a e^{2} {\left | e \right |}\right )}}\right )} \] Input:

integrate((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorit 
hm="giac")
 

Output:

-2*e*(e*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)/sqrt(c*d^2*e - a*e^ 
3))/(sqrt(c*d^2*e - a*e^3)*(c*d^2*abs(e) - a*e^2*abs(e))) + e/(sqrt((e*x + 
 d)*c*d*e - c*d^2*e + a*e^3)*(c*d^2*abs(e) - a*e^2*abs(e))))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {d+e\,x}}{{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \] Input:

int((d + e*x)^(1/2)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2),x)
 

Output:

int((d + e*x)^(1/2)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {d+e x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {-2 \sqrt {e}\, \sqrt {c d x +a e}\, \sqrt {-a \,e^{2}+c \,d^{2}}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {e}\, \sqrt {-a \,e^{2}+c \,d^{2}}}\right )+2 a \,e^{2}-2 c \,d^{2}}{\sqrt {c d x +a e}\, \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right )} \] Input:

int((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)
 

Output:

(2*( - sqrt(e)*sqrt(a*e + c*d*x)*sqrt( - a*e**2 + c*d**2)*atan((sqrt(a*e + 
 c*d*x)*e)/(sqrt(e)*sqrt( - a*e**2 + c*d**2))) + a*e**2 - c*d**2))/(sqrt(a 
*e + c*d*x)*(a**2*e**4 - 2*a*c*d**2*e**2 + c**2*d**4))