\(\int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx\) [114]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 103 \[ \int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx=\frac {2 \sqrt {d} \arctan \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\sqrt [4]{b^2-4 a c}}-\frac {2 \sqrt {d} \text {arctanh}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\sqrt [4]{b^2-4 a c}} \] Output:

2*d^(1/2)*arctan((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2))/(-4*a*c+b 
^2)^(1/4)-2*d^(1/2)*arctanh((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2) 
)/(-4*a*c+b^2)^(1/4)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.20 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.47 \[ \int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx=-\frac {(1+i) \sqrt {d (b+2 c x)} \left (\arctan \left (1-\frac {(1+i) \sqrt {b+2 c x}}{\sqrt [4]{b^2-4 a c}}\right )-\arctan \left (1+\frac {(1+i) \sqrt {b+2 c x}}{\sqrt [4]{b^2-4 a c}}\right )+\text {arctanh}\left (\frac {(1+i) \sqrt [4]{b^2-4 a c} \sqrt {b+2 c x}}{\sqrt {b^2-4 a c}+i (b+2 c x)}\right )\right )}{\sqrt [4]{b^2-4 a c} \sqrt {b+2 c x}} \] Input:

Integrate[Sqrt[b*d + 2*c*d*x]/(a + b*x + c*x^2),x]
 

Output:

((-1 - I)*Sqrt[d*(b + 2*c*x)]*(ArcTan[1 - ((1 + I)*Sqrt[b + 2*c*x])/(b^2 - 
 4*a*c)^(1/4)] - ArcTan[1 + ((1 + I)*Sqrt[b + 2*c*x])/(b^2 - 4*a*c)^(1/4)] 
 + ArcTanh[((1 + I)*(b^2 - 4*a*c)^(1/4)*Sqrt[b + 2*c*x])/(Sqrt[b^2 - 4*a*c 
] + I*(b + 2*c*x))]))/((b^2 - 4*a*c)^(1/4)*Sqrt[b + 2*c*x])
 

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.07, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {1118, 27, 25, 266, 827, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx\)

\(\Big \downarrow \) 1118

\(\displaystyle \frac {\int \frac {4 c d^2 \sqrt {b d+2 c x d}}{\left (4 a-\frac {b^2}{c}\right ) c d^2+(b d+2 c x d)^2}d(b d+2 c x d)}{2 c d}\)

\(\Big \downarrow \) 27

\(\displaystyle 2 d \int -\frac {\sqrt {b d+2 c x d}}{\left (b^2-4 a c\right ) d^2-(b d+2 c x d)^2}d(b d+2 c x d)\)

\(\Big \downarrow \) 25

\(\displaystyle -2 d \int \frac {\sqrt {b d+2 c x d}}{\left (b^2-4 a c\right ) d^2-(b d+2 c x d)^2}d(b d+2 c x d)\)

\(\Big \downarrow \) 266

\(\displaystyle -4 d \int \frac {b d+2 c x d}{\left (b^2-4 a c\right ) d^2-(b d+2 c x d)^2}d\sqrt {b d+2 c x d}\)

\(\Big \downarrow \) 827

\(\displaystyle -4 d \left (\frac {1}{2} \int \frac {1}{-b d-2 c x d+\sqrt {b^2-4 a c} d}d\sqrt {b d+2 c x d}-\frac {1}{2} \int \frac {1}{b d+2 c x d+\sqrt {b^2-4 a c} d}d\sqrt {b d+2 c x d}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle -4 d \left (\frac {1}{2} \int \frac {1}{-b d-2 c x d+\sqrt {b^2-4 a c} d}d\sqrt {b d+2 c x d}-\frac {\arctan \left (\frac {\sqrt {b d+2 c d x}}{\sqrt {d} \sqrt [4]{b^2-4 a c}}\right )}{2 \sqrt {d} \sqrt [4]{b^2-4 a c}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle -4 d \left (\frac {\text {arctanh}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt {d} \sqrt [4]{b^2-4 a c}}\right )}{2 \sqrt {d} \sqrt [4]{b^2-4 a c}}-\frac {\arctan \left (\frac {\sqrt {b d+2 c d x}}{\sqrt {d} \sqrt [4]{b^2-4 a c}}\right )}{2 \sqrt {d} \sqrt [4]{b^2-4 a c}}\right )\)

Input:

Int[Sqrt[b*d + 2*c*d*x]/(a + b*x + c*x^2),x]
 

Output:

-4*d*(-1/2*ArcTan[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])]/((b^2 
 - 4*a*c)^(1/4)*Sqrt[d]) + ArcTanh[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4 
)*Sqrt[d])]/(2*(b^2 - 4*a*c)^(1/4)*Sqrt[d]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 1118
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[1/e   Subst[Int[x^m*(a - b^2/(4*c) + (c*x^2)/e^2)^p, x], x, 
d + e*x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[2*c*d - b*e, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(227\) vs. \(2(83)=166\).

Time = 1.64 (sec) , antiderivative size = 228, normalized size of antiderivative = 2.21

method result size
derivativedivides \(\frac {d \sqrt {2}\, \left (\ln \left (\frac {2 c d x +b d -\left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a \,d^{2} c -b^{2} d^{2}}}{2 c d x +b d +\left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a \,d^{2} c -b^{2} d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{2 \left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}}}\) \(228\)
default \(\frac {d \sqrt {2}\, \left (\ln \left (\frac {2 c d x +b d -\left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a \,d^{2} c -b^{2} d^{2}}}{2 c d x +b d +\left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a \,d^{2} c -b^{2} d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{2 \left (4 a \,d^{2} c -b^{2} d^{2}\right )^{\frac {1}{4}}}\) \(228\)
pseudoelliptic \(\frac {d \sqrt {2}\, \left (\ln \left (\frac {\sqrt {d^{2} \left (4 a c -b^{2}\right )}-\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}} \sqrt {d \left (2 c x +b \right )}\, \sqrt {2}+d \left (2 c x +b \right )}{\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}} \sqrt {d \left (2 c x +b \right )}\, \sqrt {2}+\sqrt {d^{2} \left (4 a c -b^{2}\right )}+d \left (2 c x +b \right )}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \left (2 c x +b \right )}-\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}{\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \left (2 c x +b \right )}+\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}{\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}\right )\right )}{2 \left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}\) \(243\)

Input:

int((2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a),x,method=_RETURNVERBOSE)
 

Output:

1/2*d/(4*a*c*d^2-b^2*d^2)^(1/4)*2^(1/2)*(ln((2*c*d*x+b*d-(4*a*c*d^2-b^2*d^ 
2)^(1/4)*(2*c*d*x+b*d)^(1/2)*2^(1/2)+(4*a*c*d^2-b^2*d^2)^(1/2))/(2*c*d*x+b 
*d+(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)*2^(1/2)+(4*a*c*d^2-b^2*d^ 
2)^(1/2)))+2*arctan(2^(1/2)/(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)+ 
1)-2*arctan(-2^(1/2)/(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)+1))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 237, normalized size of antiderivative = 2.30 \[ \int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx=-\left (\frac {d^{2}}{b^{2} - 4 \, a c}\right )^{\frac {1}{4}} \log \left ({\left (b^{2} - 4 \, a c\right )} \left (\frac {d^{2}}{b^{2} - 4 \, a c}\right )^{\frac {3}{4}} + \sqrt {2 \, c d x + b d} d\right ) + \left (\frac {d^{2}}{b^{2} - 4 \, a c}\right )^{\frac {1}{4}} \log \left (-{\left (b^{2} - 4 \, a c\right )} \left (\frac {d^{2}}{b^{2} - 4 \, a c}\right )^{\frac {3}{4}} + \sqrt {2 \, c d x + b d} d\right ) + i \, \left (\frac {d^{2}}{b^{2} - 4 \, a c}\right )^{\frac {1}{4}} \log \left ({\left (i \, b^{2} - 4 i \, a c\right )} \left (\frac {d^{2}}{b^{2} - 4 \, a c}\right )^{\frac {3}{4}} + \sqrt {2 \, c d x + b d} d\right ) - i \, \left (\frac {d^{2}}{b^{2} - 4 \, a c}\right )^{\frac {1}{4}} \log \left ({\left (-i \, b^{2} + 4 i \, a c\right )} \left (\frac {d^{2}}{b^{2} - 4 \, a c}\right )^{\frac {3}{4}} + \sqrt {2 \, c d x + b d} d\right ) \] Input:

integrate((2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a),x, algorithm="fricas")
 

Output:

-(d^2/(b^2 - 4*a*c))^(1/4)*log((b^2 - 4*a*c)*(d^2/(b^2 - 4*a*c))^(3/4) + s 
qrt(2*c*d*x + b*d)*d) + (d^2/(b^2 - 4*a*c))^(1/4)*log(-(b^2 - 4*a*c)*(d^2/ 
(b^2 - 4*a*c))^(3/4) + sqrt(2*c*d*x + b*d)*d) + I*(d^2/(b^2 - 4*a*c))^(1/4 
)*log((I*b^2 - 4*I*a*c)*(d^2/(b^2 - 4*a*c))^(3/4) + sqrt(2*c*d*x + b*d)*d) 
 - I*(d^2/(b^2 - 4*a*c))^(1/4)*log((-I*b^2 + 4*I*a*c)*(d^2/(b^2 - 4*a*c))^ 
(3/4) + sqrt(2*c*d*x + b*d)*d)
 

Sympy [F]

\[ \int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx=\int \frac {\sqrt {d \left (b + 2 c x\right )}}{a + b x + c x^{2}}\, dx \] Input:

integrate((2*c*d*x+b*d)**(1/2)/(c*x**2+b*x+a),x)
 

Output:

Integral(sqrt(d*(b + 2*c*x))/(a + b*x + c*x**2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` for 
 more deta
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 393 vs. \(2 (83) = 166\).

Time = 0.14 (sec) , antiderivative size = 393, normalized size of antiderivative = 3.82 \[ \int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx=-\frac {\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} + 2 \, \sqrt {2 \, c d x + b d}\right )}}{2 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}}}\right )}{b^{2} d - 4 \, a c d} - \frac {\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} - 2 \, \sqrt {2 \, c d x + b d}\right )}}{2 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}}}\right )}{b^{2} d - 4 \, a c d} + \frac {{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {3}{4}} \log \left (2 \, c d x + b d + \sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \sqrt {2 \, c d x + b d} + \sqrt {-b^{2} d^{2} + 4 \, a c d^{2}}\right )}{\sqrt {2} b^{2} d - 4 \, \sqrt {2} a c d} - \frac {{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {3}{4}} \log \left (2 \, c d x + b d - \sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \sqrt {2 \, c d x + b d} + \sqrt {-b^{2} d^{2} + 4 \, a c d^{2}}\right )}{\sqrt {2} b^{2} d - 4 \, \sqrt {2} a c d} \] Input:

integrate((2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a),x, algorithm="giac")
 

Output:

-sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(-b^2*d^ 
2 + 4*a*c*d^2)^(1/4) + 2*sqrt(2*c*d*x + b*d))/(-b^2*d^2 + 4*a*c*d^2)^(1/4) 
)/(b^2*d - 4*a*c*d) - sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(3/4)*arctan(-1/2*sqr 
t(2)*(sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4) - 2*sqrt(2*c*d*x + b*d))/(-b^2* 
d^2 + 4*a*c*d^2)^(1/4))/(b^2*d - 4*a*c*d) + (-b^2*d^2 + 4*a*c*d^2)^(3/4)*l 
og(2*c*d*x + b*d + sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*sqrt(2*c*d*x + b*d 
) + sqrt(-b^2*d^2 + 4*a*c*d^2))/(sqrt(2)*b^2*d - 4*sqrt(2)*a*c*d) - (-b^2* 
d^2 + 4*a*c*d^2)^(3/4)*log(2*c*d*x + b*d - sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^ 
(1/4)*sqrt(2*c*d*x + b*d) + sqrt(-b^2*d^2 + 4*a*c*d^2))/(sqrt(2)*b^2*d - 4 
*sqrt(2)*a*c*d)
 

Mupad [B] (verification not implemented)

Time = 5.40 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.81 \[ \int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx=\frac {2\,\sqrt {d}\,\mathrm {atan}\left (\frac {\sqrt {b\,d+2\,c\,d\,x}}{\sqrt {d}\,{\left (b^2-4\,a\,c\right )}^{1/4}}\right )}{{\left (b^2-4\,a\,c\right )}^{1/4}}-\frac {2\,\sqrt {d}\,\mathrm {atanh}\left (\frac {\sqrt {b\,d+2\,c\,d\,x}}{\sqrt {d}\,{\left (b^2-4\,a\,c\right )}^{1/4}}\right )}{{\left (b^2-4\,a\,c\right )}^{1/4}} \] Input:

int((b*d + 2*c*d*x)^(1/2)/(a + b*x + c*x^2),x)
 

Output:

(2*d^(1/2)*atan((b*d + 2*c*d*x)^(1/2)/(d^(1/2)*(b^2 - 4*a*c)^(1/4))))/(b^2 
 - 4*a*c)^(1/4) - (2*d^(1/2)*atanh((b*d + 2*c*d*x)^(1/2)/(d^(1/2)*(b^2 - 4 
*a*c)^(1/4))))/(b^2 - 4*a*c)^(1/4)
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.97 \[ \int \frac {\sqrt {b d+2 c d x}}{a+b x+c x^2} \, dx=\frac {\sqrt {d}\, \left (4 a c -b^{2}\right )^{\frac {3}{4}} \sqrt {2}\, \left (-2 \mathit {atan} \left (\frac {\left (4 a c -b^{2}\right )^{\frac {1}{4}} \sqrt {2}-2 \sqrt {2 c x +b}}{\left (4 a c -b^{2}\right )^{\frac {1}{4}} \sqrt {2}}\right )+2 \mathit {atan} \left (\frac {\left (4 a c -b^{2}\right )^{\frac {1}{4}} \sqrt {2}+2 \sqrt {2 c x +b}}{\left (4 a c -b^{2}\right )^{\frac {1}{4}} \sqrt {2}}\right )+\mathrm {log}\left (-\sqrt {2 c x +b}\, \left (4 a c -b^{2}\right )^{\frac {1}{4}} \sqrt {2}+\sqrt {4 a c -b^{2}}+b +2 c x \right )-\mathrm {log}\left (\sqrt {2 c x +b}\, \left (4 a c -b^{2}\right )^{\frac {1}{4}} \sqrt {2}+\sqrt {4 a c -b^{2}}+b +2 c x \right )\right )}{8 a c -2 b^{2}} \] Input:

int((2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a),x)
 

Output:

(sqrt(d)*(4*a*c - b**2)**(3/4)*sqrt(2)*( - 2*atan(((4*a*c - b**2)**(1/4)*s 
qrt(2) - 2*sqrt(b + 2*c*x))/((4*a*c - b**2)**(1/4)*sqrt(2))) + 2*atan(((4* 
a*c - b**2)**(1/4)*sqrt(2) + 2*sqrt(b + 2*c*x))/((4*a*c - b**2)**(1/4)*sqr 
t(2))) + log( - sqrt(b + 2*c*x)*(4*a*c - b**2)**(1/4)*sqrt(2) + sqrt(4*a*c 
 - b**2) + b + 2*c*x) - log(sqrt(b + 2*c*x)*(4*a*c - b**2)**(1/4)*sqrt(2) 
+ sqrt(4*a*c - b**2) + b + 2*c*x)))/(2*(4*a*c - b**2))