\(\int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx\) [227]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 184 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx=-\frac {\sqrt {a+b x+c x^2}}{7 c d (b d+2 c d x)^{7/2}}+\frac {2 \sqrt {a+b x+c x^2}}{21 c \left (b^2-4 a c\right ) d^3 (b d+2 c d x)^{3/2}}+\frac {\sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{21 c^2 \left (b^2-4 a c\right )^{3/4} d^{9/2} \sqrt {a+b x+c x^2}} \] Output:

-1/7*(c*x^2+b*x+a)^(1/2)/c/d/(2*c*d*x+b*d)^(7/2)+2/21*(c*x^2+b*x+a)^(1/2)/ 
c/(-4*a*c+b^2)/d^3/(2*c*d*x+b*d)^(3/2)+1/21*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2) 
)^(1/2)*EllipticF((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2),I)/c^2/(- 
4*a*c+b^2)^(3/4)/d^(9/2)/(c*x^2+b*x+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.06 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.54 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx=-\frac {\sqrt {d (b+2 c x)} \sqrt {a+x (b+c x)} \operatorname {Hypergeometric2F1}\left (-\frac {7}{4},-\frac {1}{2},-\frac {3}{4},\frac {(b+2 c x)^2}{b^2-4 a c}\right )}{14 c d^5 (b+2 c x)^4 \sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}}} \] Input:

Integrate[Sqrt[a + b*x + c*x^2]/(b*d + 2*c*d*x)^(9/2),x]
 

Output:

-1/14*(Sqrt[d*(b + 2*c*x)]*Sqrt[a + x*(b + c*x)]*Hypergeometric2F1[-7/4, - 
1/2, -3/4, (b + 2*c*x)^2/(b^2 - 4*a*c)])/(c*d^5*(b + 2*c*x)^4*Sqrt[(c*(a + 
 x*(b + c*x)))/(-b^2 + 4*a*c)])
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {1108, 1117, 1115, 1113, 762}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx\)

\(\Big \downarrow \) 1108

\(\displaystyle \frac {\int \frac {1}{(b d+2 c x d)^{5/2} \sqrt {c x^2+b x+a}}dx}{14 c d^2}-\frac {\sqrt {a+b x+c x^2}}{7 c d (b d+2 c d x)^{7/2}}\)

\(\Big \downarrow \) 1117

\(\displaystyle \frac {\frac {\int \frac {1}{\sqrt {b d+2 c x d} \sqrt {c x^2+b x+a}}dx}{3 d^2 \left (b^2-4 a c\right )}+\frac {4 \sqrt {a+b x+c x^2}}{3 d \left (b^2-4 a c\right ) (b d+2 c d x)^{3/2}}}{14 c d^2}-\frac {\sqrt {a+b x+c x^2}}{7 c d (b d+2 c d x)^{7/2}}\)

\(\Big \downarrow \) 1115

\(\displaystyle \frac {\frac {\sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \int \frac {1}{\sqrt {b d+2 c x d} \sqrt {-\frac {c^2 x^2}{b^2-4 a c}-\frac {b c x}{b^2-4 a c}-\frac {a c}{b^2-4 a c}}}dx}{3 d^2 \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}+\frac {4 \sqrt {a+b x+c x^2}}{3 d \left (b^2-4 a c\right ) (b d+2 c d x)^{3/2}}}{14 c d^2}-\frac {\sqrt {a+b x+c x^2}}{7 c d (b d+2 c d x)^{7/2}}\)

\(\Big \downarrow \) 1113

\(\displaystyle \frac {\frac {2 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \int \frac {1}{\sqrt {1-\frac {(b d+2 c x d)^2}{\left (b^2-4 a c\right ) d^2}}}d\sqrt {b d+2 c x d}}{3 c d^3 \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}+\frac {4 \sqrt {a+b x+c x^2}}{3 d \left (b^2-4 a c\right ) (b d+2 c d x)^{3/2}}}{14 c d^2}-\frac {\sqrt {a+b x+c x^2}}{7 c d (b d+2 c d x)^{7/2}}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {\frac {2 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{3 c d^{5/2} \left (b^2-4 a c\right )^{3/4} \sqrt {a+b x+c x^2}}+\frac {4 \sqrt {a+b x+c x^2}}{3 d \left (b^2-4 a c\right ) (b d+2 c d x)^{3/2}}}{14 c d^2}-\frac {\sqrt {a+b x+c x^2}}{7 c d (b d+2 c d x)^{7/2}}\)

Input:

Int[Sqrt[a + b*x + c*x^2]/(b*d + 2*c*d*x)^(9/2),x]
 

Output:

-1/7*Sqrt[a + b*x + c*x^2]/(c*d*(b*d + 2*c*d*x)^(7/2)) + ((4*Sqrt[a + b*x 
+ c*x^2])/(3*(b^2 - 4*a*c)*d*(b*d + 2*c*d*x)^(3/2)) + (2*Sqrt[-((c*(a + b* 
x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4 
*a*c)^(1/4)*Sqrt[d])], -1])/(3*c*(b^2 - 4*a*c)^(3/4)*d^(5/2)*Sqrt[a + b*x 
+ c*x^2]))/(14*c*d^2)
 

Defintions of rubi rules used

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 1108
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*((a + b*x + c*x^2)^p/(e*(m + 1))), x] - Si 
mp[b*(p/(d*e*(m + 1)))   Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1), x 
], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 
3, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !(IntegerQ[m/2] && LtQ[m + 2*p + 3, 0] 
) && IntegerQ[2*p]
 

rule 1113
Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_ 
Symbol] :> Simp[(4/e)*Sqrt[-c/(b^2 - 4*a*c)]   Subst[Int[1/Sqrt[Simp[1 - b^ 
2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, 
 c, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]
 

rule 1115
Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Sym 
bol] :> Simp[Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/Sqrt[a + b*x + c* 
x^2]   Int[(d + e*x)^m/Sqrt[(-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a*c)) 
- c^2*(x^2/(b^2 - 4*a*c))], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c* 
d - b*e, 0] && EqQ[m^2, 1/4]
 

rule 1117
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[-2*b*d*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(d^2*(m 
+ 1)*(b^2 - 4*a*c))), x] + Simp[b^2*((m + 2*p + 3)/(d^2*(m + 1)*(b^2 - 4*a* 
c)))   Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, 
 d, e, p}, x] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[m, -1] & 
& (IntegerQ[2*p] || (IntegerQ[m] && RationalQ[p]) || IntegerQ[(m + 2*p + 3) 
/2])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(546\) vs. \(2(156)=312\).

Time = 2.38 (sec) , antiderivative size = 547, normalized size of antiderivative = 2.97

method result size
elliptic \(\frac {\sqrt {d \left (2 c x +b \right ) \left (c \,x^{2}+b x +a \right )}\, \left (-\frac {\sqrt {2 c^{2} d \,x^{3}+3 b c d \,x^{2}+2 a d x c +b^{2} d x +d a b}}{112 d^{5} c^{5} \left (x +\frac {b}{2 c}\right )^{4}}-\frac {\sqrt {2 c^{2} d \,x^{3}+3 b c d \,x^{2}+2 a d x c +b^{2} d x +d a b}}{42 \left (4 a c -b^{2}\right ) c^{3} d^{5} \left (x +\frac {b}{2 c}\right )^{2}}-\frac {\left (\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}}\right )}{21 \left (4 a c -b^{2}\right ) c \,d^{4} \sqrt {2 c^{2} d \,x^{3}+3 b c d \,x^{2}+2 a d x c +b^{2} d x +d a b}}\right )}{\sqrt {d \left (2 c x +b \right )}\, \sqrt {c \,x^{2}+b x +a}}\) \(547\)
default \(-\frac {\left (8 \sqrt {-4 a c +b^{2}}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-2 c x +\sqrt {-4 a c +b^{2}}-b}{\sqrt {-4 a c +b^{2}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {2}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}}{2}, \sqrt {2}\right ) c^{3} x^{3}+12 \sqrt {-4 a c +b^{2}}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-2 c x +\sqrt {-4 a c +b^{2}}-b}{\sqrt {-4 a c +b^{2}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {2}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}}{2}, \sqrt {2}\right ) b \,c^{2} x^{2}+6 \sqrt {-4 a c +b^{2}}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-2 c x +\sqrt {-4 a c +b^{2}}-b}{\sqrt {-4 a c +b^{2}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {2}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}}{2}, \sqrt {2}\right ) b^{2} c x +\sqrt {-4 a c +b^{2}}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-2 c x +\sqrt {-4 a c +b^{2}}-b}{\sqrt {-4 a c +b^{2}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {2}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}}{2}, \sqrt {2}\right ) b^{3}+16 c^{4} x^{4}+32 b \,c^{3} x^{3}+40 a \,c^{3} x^{2}+14 b^{2} c^{2} x^{2}+40 a b \,c^{2} x -2 b^{3} c x +24 a^{2} c^{2}-2 c a \,b^{2}\right ) \sqrt {d \left (2 c x +b \right )}}{42 d^{5} \sqrt {c \,x^{2}+b x +a}\, \left (4 a c -b^{2}\right ) \left (2 c x +b \right )^{4} c^{2}}\) \(659\)

Input:

int((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(9/2),x,method=_RETURNVERBOSE)
 

Output:

(d*(2*c*x+b)*(c*x^2+b*x+a))^(1/2)/(d*(2*c*x+b))^(1/2)/(c*x^2+b*x+a)^(1/2)* 
(-1/112/d^5/c^5*(2*c^2*d*x^3+3*b*c*d*x^2+2*a*c*d*x+b^2*d*x+a*b*d)^(1/2)/(x 
+1/2*b/c)^4-1/42/(4*a*c-b^2)/c^3/d^5*(2*c^2*d*x^3+3*b*c*d*x^2+2*a*c*d*x+b^ 
2*d*x+a*b*d)^(1/2)/(x+1/2*b/c)^2-1/21/(4*a*c-b^2)/c/d^4*(1/2/c*(-b+(-4*a*c 
+b^2)^(1/2))+1/2*(b+(-4*a*c+b^2)^(1/2))/c)*((x+1/2*(b+(-4*a*c+b^2)^(1/2))/ 
c)/(1/2/c*(-b+(-4*a*c+b^2)^(1/2))+1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2)*((x 
+1/2*b/c)/(-1/2*(b+(-4*a*c+b^2)^(1/2))/c+1/2*b/c))^(1/2)*((x-1/2/c*(-b+(-4 
*a*c+b^2)^(1/2)))/(-1/2*(b+(-4*a*c+b^2)^(1/2))/c-1/2/c*(-b+(-4*a*c+b^2)^(1 
/2))))^(1/2)/(2*c^2*d*x^3+3*b*c*d*x^2+2*a*c*d*x+b^2*d*x+a*b*d)^(1/2)*Ellip 
ticF(((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(1/2/c*(-b+(-4*a*c+b^2)^(1/2))+1/2* 
(b+(-4*a*c+b^2)^(1/2))/c))^(1/2),((-1/2*(b+(-4*a*c+b^2)^(1/2))/c-1/2/c*(-b 
+(-4*a*c+b^2)^(1/2)))/(-1/2*(b+(-4*a*c+b^2)^(1/2))/c+1/2*b/c))^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.36 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx=\frac {\sqrt {2} {\left (16 \, c^{4} x^{4} + 32 \, b c^{3} x^{3} + 24 \, b^{2} c^{2} x^{2} + 8 \, b^{3} c x + b^{4}\right )} \sqrt {c^{2} d} {\rm weierstrassPInverse}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, \frac {2 \, c x + b}{2 \, c}\right ) + 2 \, {\left (8 \, c^{4} x^{2} + 8 \, b c^{3} x - b^{2} c^{2} + 12 \, a c^{3}\right )} \sqrt {2 \, c d x + b d} \sqrt {c x^{2} + b x + a}}{42 \, {\left (16 \, {\left (b^{2} c^{7} - 4 \, a c^{8}\right )} d^{5} x^{4} + 32 \, {\left (b^{3} c^{6} - 4 \, a b c^{7}\right )} d^{5} x^{3} + 24 \, {\left (b^{4} c^{5} - 4 \, a b^{2} c^{6}\right )} d^{5} x^{2} + 8 \, {\left (b^{5} c^{4} - 4 \, a b^{3} c^{5}\right )} d^{5} x + {\left (b^{6} c^{3} - 4 \, a b^{4} c^{4}\right )} d^{5}\right )}} \] Input:

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(9/2),x, algorithm="fricas")
 

Output:

1/42*(sqrt(2)*(16*c^4*x^4 + 32*b*c^3*x^3 + 24*b^2*c^2*x^2 + 8*b^3*c*x + b^ 
4)*sqrt(c^2*d)*weierstrassPInverse((b^2 - 4*a*c)/c^2, 0, 1/2*(2*c*x + b)/c 
) + 2*(8*c^4*x^2 + 8*b*c^3*x - b^2*c^2 + 12*a*c^3)*sqrt(2*c*d*x + b*d)*sqr 
t(c*x^2 + b*x + a))/(16*(b^2*c^7 - 4*a*c^8)*d^5*x^4 + 32*(b^3*c^6 - 4*a*b* 
c^7)*d^5*x^3 + 24*(b^4*c^5 - 4*a*b^2*c^6)*d^5*x^2 + 8*(b^5*c^4 - 4*a*b^3*c 
^5)*d^5*x + (b^6*c^3 - 4*a*b^4*c^4)*d^5)
 

Sympy [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx=\int \frac {\sqrt {a + b x + c x^{2}}}{\left (d \left (b + 2 c x\right )\right )^{\frac {9}{2}}}\, dx \] Input:

integrate((c*x**2+b*x+a)**(1/2)/(2*c*d*x+b*d)**(9/2),x)
 

Output:

Integral(sqrt(a + b*x + c*x**2)/(d*(b + 2*c*x))**(9/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx=\int { \frac {\sqrt {c x^{2} + b x + a}}{{\left (2 \, c d x + b d\right )}^{\frac {9}{2}}} \,d x } \] Input:

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(9/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(c*x^2 + b*x + a)/(2*c*d*x + b*d)^(9/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx=\int { \frac {\sqrt {c x^{2} + b x + a}}{{\left (2 \, c d x + b d\right )}^{\frac {9}{2}}} \,d x } \] Input:

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(9/2),x, algorithm="giac")
 

Output:

integrate(sqrt(c*x^2 + b*x + a)/(2*c*d*x + b*d)^(9/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx=\int \frac {\sqrt {c\,x^2+b\,x+a}}{{\left (b\,d+2\,c\,d\,x\right )}^{9/2}} \,d x \] Input:

int((a + b*x + c*x^2)^(1/2)/(b*d + 2*c*d*x)^(9/2),x)
 

Output:

int((a + b*x + c*x^2)^(1/2)/(b*d + 2*c*d*x)^(9/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{9/2}} \, dx=\text {too large to display} \] Input:

int((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(9/2),x)
 

Output:

(sqrt(d)*( - 2*sqrt(b + 2*c*x)*sqrt(a + b*x + c*x**2)*a + 56*int((sqrt(b + 
 2*c*x)*sqrt(a + b*x + c*x**2)*x**2)/(14*a**2*b**5*c + 140*a**2*b**4*c**2* 
x + 560*a**2*b**3*c**3*x**2 + 1120*a**2*b**2*c**4*x**3 + 1120*a**2*b*c**5* 
x**4 + 448*a**2*c**6*x**5 - a*b**7 + 4*a*b**6*c*x + 114*a*b**5*c**2*x**2 + 
 620*a*b**4*c**3*x**3 + 1600*a*b**3*c**4*x**4 + 2208*a*b**2*c**5*x**5 + 15 
68*a*b*c**6*x**6 + 448*a*c**7*x**7 - b**8*x - 11*b**7*c*x**2 - 50*b**6*c** 
2*x**3 - 120*b**5*c**3*x**4 - 160*b**4*c**4*x**5 - 112*b**3*c**5*x**6 - 32 
*b**2*c**6*x**7),x)*a**2*b**4*c**3 + 448*int((sqrt(b + 2*c*x)*sqrt(a + b*x 
 + c*x**2)*x**2)/(14*a**2*b**5*c + 140*a**2*b**4*c**2*x + 560*a**2*b**3*c* 
*3*x**2 + 1120*a**2*b**2*c**4*x**3 + 1120*a**2*b*c**5*x**4 + 448*a**2*c**6 
*x**5 - a*b**7 + 4*a*b**6*c*x + 114*a*b**5*c**2*x**2 + 620*a*b**4*c**3*x** 
3 + 1600*a*b**3*c**4*x**4 + 2208*a*b**2*c**5*x**5 + 1568*a*b*c**6*x**6 + 4 
48*a*c**7*x**7 - b**8*x - 11*b**7*c*x**2 - 50*b**6*c**2*x**3 - 120*b**5*c* 
*3*x**4 - 160*b**4*c**4*x**5 - 112*b**3*c**5*x**6 - 32*b**2*c**6*x**7),x)* 
a**2*b**3*c**4*x + 1344*int((sqrt(b + 2*c*x)*sqrt(a + b*x + c*x**2)*x**2)/ 
(14*a**2*b**5*c + 140*a**2*b**4*c**2*x + 560*a**2*b**3*c**3*x**2 + 1120*a* 
*2*b**2*c**4*x**3 + 1120*a**2*b*c**5*x**4 + 448*a**2*c**6*x**5 - a*b**7 + 
4*a*b**6*c*x + 114*a*b**5*c**2*x**2 + 620*a*b**4*c**3*x**3 + 1600*a*b**3*c 
**4*x**4 + 2208*a*b**2*c**5*x**5 + 1568*a*b*c**6*x**6 + 448*a*c**7*x**7 - 
b**8*x - 11*b**7*c*x**2 - 50*b**6*c**2*x**3 - 120*b**5*c**3*x**4 - 160*...