\(\int \frac {1}{\sqrt {b d+2 c d x} (a+b x+c x^2)^{3/2}} \, dx\) [278]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 137 \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {b d+2 c d x}}{\left (b^2-4 a c\right ) d \sqrt {a+b x+c x^2}}-\frac {4 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{\left (b^2-4 a c\right )^{3/4} \sqrt {d} \sqrt {a+b x+c x^2}} \] Output:

-2*(2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)/d/(c*x^2+b*x+a)^(1/2)-4*(-c*(c*x^2+b*x 
+a)/(-4*a*c+b^2))^(1/2)*EllipticF((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d 
^(1/2),I)/(-4*a*c+b^2)^(3/4)/d^(1/2)/(c*x^2+b*x+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.07 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.73 \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d (b+2 c x)} \left (1+2 \sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {(b+2 c x)^2}{b^2-4 a c}\right )\right )}{\left (b^2-4 a c\right ) d \sqrt {a+x (b+c x)}} \] Input:

Integrate[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)^(3/2)),x]
 

Output:

(-2*Sqrt[d*(b + 2*c*x)]*(1 + 2*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]* 
Hypergeometric2F1[1/4, 1/2, 5/4, (b + 2*c*x)^2/(b^2 - 4*a*c)]))/((b^2 - 4* 
a*c)*d*Sqrt[a + x*(b + c*x)])
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1111, 1115, 1113, 762}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x+c x^2\right )^{3/2} \sqrt {b d+2 c d x}} \, dx\)

\(\Big \downarrow \) 1111

\(\displaystyle -\frac {2 c \int \frac {1}{\sqrt {b d+2 c x d} \sqrt {c x^2+b x+a}}dx}{b^2-4 a c}-\frac {2 \sqrt {b d+2 c d x}}{d \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}\)

\(\Big \downarrow \) 1115

\(\displaystyle -\frac {2 c \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \int \frac {1}{\sqrt {b d+2 c x d} \sqrt {-\frac {c^2 x^2}{b^2-4 a c}-\frac {b c x}{b^2-4 a c}-\frac {a c}{b^2-4 a c}}}dx}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}-\frac {2 \sqrt {b d+2 c d x}}{d \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}\)

\(\Big \downarrow \) 1113

\(\displaystyle -\frac {4 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \int \frac {1}{\sqrt {1-\frac {(b d+2 c x d)^2}{\left (b^2-4 a c\right ) d^2}}}d\sqrt {b d+2 c x d}}{d \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}-\frac {2 \sqrt {b d+2 c d x}}{d \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}\)

\(\Big \downarrow \) 762

\(\displaystyle -\frac {4 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{\sqrt {d} \left (b^2-4 a c\right )^{3/4} \sqrt {a+b x+c x^2}}-\frac {2 \sqrt {b d+2 c d x}}{d \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}\)

Input:

Int[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)^(3/2)),x]
 

Output:

(-2*Sqrt[b*d + 2*c*d*x])/((b^2 - 4*a*c)*d*Sqrt[a + b*x + c*x^2]) - (4*Sqrt 
[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d 
*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/((b^2 - 4*a*c)^(3/4)*Sqrt[d]*Sqrt 
[a + b*x + c*x^2])
 

Defintions of rubi rules used

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 1111
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[2*c*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(e*(p + 1)* 
(b^2 - 4*a*c))), x] - Simp[2*c*e*((m + 2*p + 3)/(e*(p + 1)*(b^2 - 4*a*c))) 
  Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e 
, m}, x] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[p, -1] &&  !G 
tQ[m, 1] && RationalQ[m] && IntegerQ[2*p]
 

rule 1113
Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_ 
Symbol] :> Simp[(4/e)*Sqrt[-c/(b^2 - 4*a*c)]   Subst[Int[1/Sqrt[Simp[1 - b^ 
2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, 
 c, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]
 

rule 1115
Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Sym 
bol] :> Simp[Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/Sqrt[a + b*x + c* 
x^2]   Int[(d + e*x)^m/Sqrt[(-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a*c)) 
- c^2*(x^2/(b^2 - 4*a*c))], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c* 
d - b*e, 0] && EqQ[m^2, 1/4]
 
Maple [A] (verified)

Time = 4.85 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.50

method result size
default \(\frac {2 \left (\sqrt {-4 a c +b^{2}}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-2 c x +\sqrt {-4 a c +b^{2}}-b}{\sqrt {-4 a c +b^{2}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {2}\, \sqrt {\frac {2 c x +\sqrt {-4 a c +b^{2}}+b}{\sqrt {-4 a c +b^{2}}}}}{2}, \sqrt {2}\right )+2 c x +b \right ) \sqrt {c \,x^{2}+b x +a}\, \sqrt {d \left (2 c x +b \right )}}{\left (4 a c -b^{2}\right ) d \left (2 x^{3} c^{2}+3 b c \,x^{2}+2 a c x +b^{2} x +a b \right )}\) \(206\)
elliptic \(\frac {\sqrt {d \left (2 c x +b \right ) \left (c \,x^{2}+b x +a \right )}\, \left (\frac {4 c^{2} d x +2 d b c}{\left (4 a c -b^{2}\right ) d c \sqrt {\left (\frac {a}{c}+\frac {b x}{c}+x^{2}\right ) \left (2 c^{2} d x +d b c \right )}}+\frac {4 c \left (\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}}\right )}{\left (4 a c -b^{2}\right ) \sqrt {2 c^{2} d \,x^{3}+3 b c d \,x^{2}+2 a d x c +b^{2} d x +d a b}}\right )}{\sqrt {d \left (2 c x +b \right )}\, \sqrt {c \,x^{2}+b x +a}}\) \(484\)

Input:

int(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2*((-4*a*c+b^2)^(1/2)*(1/(-4*a*c+b^2)^(1/2)*(2*c*x+(-4*a*c+b^2)^(1/2)+b))^ 
(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-2*c*x+(-4*a*c+b^2)^(1/2)-b) 
/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*2^(1/2)*(1/(-4*a*c+b^2)^(1/2)*(2* 
c*x+(-4*a*c+b^2)^(1/2)+b))^(1/2),2^(1/2))+2*c*x+b)*(c*x^2+b*x+a)^(1/2)*(d* 
(2*c*x+b))^(1/2)/(4*a*c-b^2)/d/(2*c^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.94 \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx=-\frac {2 \, {\left (\sqrt {2} \sqrt {c^{2} d} {\left (c x^{2} + b x + a\right )} {\rm weierstrassPInverse}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, \frac {2 \, c x + b}{2 \, c}\right ) + \sqrt {2 \, c d x + b d} \sqrt {c x^{2} + b x + a} c\right )}}{{\left (b^{2} c^{2} - 4 \, a c^{3}\right )} d x^{2} + {\left (b^{3} c - 4 \, a b c^{2}\right )} d x + {\left (a b^{2} c - 4 \, a^{2} c^{2}\right )} d} \] Input:

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")
 

Output:

-2*(sqrt(2)*sqrt(c^2*d)*(c*x^2 + b*x + a)*weierstrassPInverse((b^2 - 4*a*c 
)/c^2, 0, 1/2*(2*c*x + b)/c) + sqrt(2*c*d*x + b*d)*sqrt(c*x^2 + b*x + a)*c 
)/((b^2*c^2 - 4*a*c^3)*d*x^2 + (b^3*c - 4*a*b*c^2)*d*x + (a*b^2*c - 4*a^2* 
c^2)*d)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx=\int \frac {1}{\sqrt {d \left (b + 2 c x\right )} \left (a + b x + c x^{2}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(2*c*d*x+b*d)**(1/2)/(c*x**2+b*x+a)**(3/2),x)
 

Output:

Integral(1/(sqrt(d*(b + 2*c*x))*(a + b*x + c*x**2)**(3/2)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx=\int { \frac {1}{\sqrt {2 \, c d x + b d} {\left (c x^{2} + b x + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx=\int { \frac {1}{\sqrt {2 \, c d x + b d} {\left (c x^{2} + b x + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")
 

Output:

integrate(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx=\int \frac {1}{\sqrt {b\,d+2\,c\,d\,x}\,{\left (c\,x^2+b\,x+a\right )}^{3/2}} \,d x \] Input:

int(1/((b*d + 2*c*d*x)^(1/2)*(a + b*x + c*x^2)^(3/2)),x)
 

Output:

int(1/((b*d + 2*c*d*x)^(1/2)*(a + b*x + c*x^2)^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx=\frac {\sqrt {d}\, \left (\int \frac {\sqrt {2 c x +b}\, \sqrt {c \,x^{2}+b x +a}}{2 c^{3} x^{5}+5 b \,c^{2} x^{4}+4 a \,c^{2} x^{3}+4 b^{2} c \,x^{3}+6 a b c \,x^{2}+b^{3} x^{2}+2 a^{2} c x +2 a \,b^{2} x +a^{2} b}d x \right )}{d} \] Input:

int(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

(sqrt(d)*int((sqrt(b + 2*c*x)*sqrt(a + b*x + c*x**2))/(a**2*b + 2*a**2*c*x 
 + 2*a*b**2*x + 6*a*b*c*x**2 + 4*a*c**2*x**3 + b**3*x**2 + 4*b**2*c*x**3 + 
 5*b*c**2*x**4 + 2*c**3*x**5),x))/d