\(\int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx\) [305]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 63 \[ \int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\frac {2 \sqrt {e} E\left (\left .\arcsin \left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right )\right |-1\right )}{d}-\frac {2 \sqrt {e} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right ),-1\right )}{d} \] Output:

2*e^(1/2)*EllipticE((d*e*x+c*e)^(1/2)/e^(1/2),I)/d-2*e^(1/2)*EllipticF((d* 
e*x+c*e)^(1/2)/e^(1/2),I)/d
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.63 \[ \int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\frac {2 (c+d x) \sqrt {e (c+d x)} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},(c+d x)^2\right )}{3 d} \] Input:

Integrate[Sqrt[c*e + d*e*x]/Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2],x]
 

Output:

(2*(c + d*x)*Sqrt[e*(c + d*x)]*Hypergeometric2F1[1/2, 3/4, 7/4, (c + d*x)^ 
2])/(3*d)
 

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.02, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {1114, 836, 27, 762, 1389, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c e+d e x}}{\sqrt {-c^2-2 c d x-d^2 x^2+1}} \, dx\)

\(\Big \downarrow \) 1114

\(\displaystyle \frac {2 \int \frac {c e+d x e}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}}{d e}\)

\(\Big \downarrow \) 836

\(\displaystyle \frac {2 \left (e \int \frac {c e+d x e+e}{e \sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}-e \int \frac {1}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}\right )}{d e}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\int \frac {c e+d x e+e}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}-e \int \frac {1}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}\right )}{d e}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {2 \left (\int \frac {c e+d x e+e}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}-e^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right ),-1\right )\right )}{d e}\)

\(\Big \downarrow \) 1389

\(\displaystyle \frac {2 \left (e \int \frac {\sqrt {\frac {c e+d x e}{e}+1}}{\sqrt {1-\frac {c e+d x e}{e}}}d\sqrt {c e+d x e}-e^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right ),-1\right )\right )}{d e}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {2 \left (e^{3/2} E\left (\left .\arcsin \left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right )\right |-1\right )-e^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right ),-1\right )\right )}{d e}\)

Input:

Int[Sqrt[c*e + d*e*x]/Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2],x]
 

Output:

(2*(e^(3/2)*EllipticE[ArcSin[Sqrt[c*e + d*e*x]/Sqrt[e]], -1] - e^(3/2)*Ell 
ipticF[ArcSin[Sqrt[c*e + d*e*x]/Sqrt[e]], -1]))/(d*e)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 836
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, 
Simp[-q^(-1)   Int[1/Sqrt[a + b*x^4], x], x] + Simp[1/q   Int[(1 + q*x^2)/S 
qrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]
 

rule 1114
Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symb 
ol] :> Simp[(4/e)*Sqrt[-c/(b^2 - 4*a*c)]   Subst[Int[x^2/Sqrt[Simp[1 - b^2* 
(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, c 
, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]
 

rule 1389
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[d/Sq 
rt[a]   Int[Sqrt[1 + e*(x^2/d)]/Sqrt[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, 
 d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] && GtQ[a, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(117\) vs. \(2(51)=102\).

Time = 1.95 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.87

method result size
default \(\frac {\sqrt {e \left (d x +c \right )}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}\, \sqrt {-2 d x -2 c +2}\, \sqrt {d x +c}\, \sqrt {2 d x +2 c +2}\, \operatorname {EllipticE}\left (\frac {\sqrt {-2 d x -2 c +2}}{2}, \sqrt {2}\right )}{d \left (d^{3} x^{3}+3 c \,d^{2} x^{2}+3 c^{2} d x +c^{3}-d x -c \right )}\) \(118\)
elliptic \(\frac {\sqrt {-e \left (d x +c \right ) \left (d^{2} x^{2}+2 c d x +c^{2}-1\right )}\, \sqrt {e \left (d x +c \right )}\, \left (\frac {2 c e \left (-\frac {c +1}{d}+\frac {c -1}{d}\right ) \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )}{\sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d e x +c e}}+\frac {2 d e \left (-\frac {c +1}{d}+\frac {c -1}{d}\right ) \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \left (\left (-\frac {c -1}{d}+\frac {c}{d}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )-\frac {c \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )}{d}\right )}{\sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d e x +c e}}\right )}{\left (d x +c \right ) \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}\, e}\) \(589\)

Input:

int((d*e*x+c*e)^(1/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x,method=_RETURNVERBO 
SE)
 

Output:

(e*(d*x+c))^(1/2)*(-d^2*x^2-2*c*d*x-c^2+1)^(1/2)*(-2*d*x-2*c+2)^(1/2)*(d*x 
+c)^(1/2)*(2*d*x+2*c+2)^(1/2)*EllipticE(1/2*(-2*d*x-2*c+2)^(1/2),2^(1/2))/ 
d/(d^3*x^3+3*c*d^2*x^2+3*c^2*d*x+c^3-d*x-c)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.57 \[ \int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\frac {2 \, \sqrt {-d^{3} e} {\rm weierstrassZeta}\left (\frac {4}{d^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right )}{d^{2}} \] Input:

integrate((d*e*x+c*e)^(1/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="f 
ricas")
 

Output:

2*sqrt(-d^3*e)*weierstrassZeta(4/d^2, 0, weierstrassPInverse(4/d^2, 0, (d* 
x + c)/d))/d^2
 

Sympy [F]

\[ \int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\int \frac {\sqrt {e \left (c + d x\right )}}{\sqrt {- \left (c + d x - 1\right ) \left (c + d x + 1\right )}}\, dx \] Input:

integrate((d*e*x+c*e)**(1/2)/(-d**2*x**2-2*c*d*x-c**2+1)**(1/2),x)
 

Output:

Integral(sqrt(e*(c + d*x))/sqrt(-(c + d*x - 1)*(c + d*x + 1)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\int { \frac {\sqrt {d e x + c e}}{\sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1}} \,d x } \] Input:

integrate((d*e*x+c*e)^(1/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="m 
axima")
 

Output:

integrate(sqrt(d*e*x + c*e)/sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1), x)
 

Giac [F]

\[ \int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\int { \frac {\sqrt {d e x + c e}}{\sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1}} \,d x } \] Input:

integrate((d*e*x+c*e)^(1/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="g 
iac")
 

Output:

integrate(sqrt(d*e*x + c*e)/sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\int \frac {\sqrt {c\,e+d\,e\,x}}{\sqrt {-c^2-2\,c\,d\,x-d^2\,x^2+1}} \,d x \] Input:

int((c*e + d*e*x)^(1/2)/(1 - d^2*x^2 - 2*c*d*x - c^2)^(1/2),x)
 

Output:

int((c*e + d*e*x)^(1/2)/(1 - d^2*x^2 - 2*c*d*x - c^2)^(1/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {\sqrt {c e+d e x}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=-\sqrt {e}\, \left (\int \frac {\sqrt {d x +c}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}}{d^{2} x^{2}+2 c d x +c^{2}-1}d x \right ) \] Input:

int((d*e*x+c*e)^(1/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x)
 

Output:

 - sqrt(e)*int((sqrt(c + d*x)*sqrt( - c**2 - 2*c*d*x - d**2*x**2 + 1))/(c* 
*2 + 2*c*d*x + d**2*x**2 - 1),x)