\(\int \frac {(a+b x+c x^2)^p}{(b d+2 c d x)^3} \, dx\) [336]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 63 \[ \int \frac {\left (a+b x+c x^2\right )^p}{(b d+2 c d x)^3} \, dx=\frac {\left (a+b x+c x^2\right )^{1+p} \operatorname {Hypergeometric2F1}\left (2,1+p,2+p,1-\frac {(b+2 c x)^2}{b^2-4 a c}\right )}{\left (b^2-4 a c\right )^2 d^3 (1+p)} \] Output:

(c*x^2+b*x+a)^(p+1)*hypergeom([2, p+1],[2+p],1-(2*c*x+b)^2/(-4*a*c+b^2))/( 
-4*a*c+b^2)^2/d^3/(p+1)
 

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.02 \[ \int \frac {\left (a+b x+c x^2\right )^p}{(b d+2 c d x)^3} \, dx=\frac {(a+x (b+c x))^{1+p} \operatorname {Hypergeometric2F1}\left (2,1+p,2+p,\frac {4 c (a+x (b+c x))}{-b^2+4 a c}\right )}{\left (b^2-4 a c\right )^2 d^3 (1+p)} \] Input:

Integrate[(a + b*x + c*x^2)^p/(b*d + 2*c*d*x)^3,x]
 

Output:

((a + x*(b + c*x))^(1 + p)*Hypergeometric2F1[2, 1 + p, 2 + p, (4*c*(a + x* 
(b + c*x)))/(-b^2 + 4*a*c)])/((b^2 - 4*a*c)^2*d^3*(1 + p))
 

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.54, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {1118, 243, 75}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x+c x^2\right )^p}{(b d+2 c d x)^3} \, dx\)

\(\Big \downarrow \) 1118

\(\displaystyle \frac {\int \frac {\left (\frac {(b d+2 c x d)^2}{4 c d^2}+\frac {1}{4} \left (4 a-\frac {b^2}{c}\right )\right )^p}{(b d+2 c x d)^3}d(b d+2 c x d)}{2 c d}\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {\int \frac {\left (\frac {(b d+2 c x d)^2}{4 c d^2}+\frac {1}{4} \left (4 a-\frac {b^2}{c}\right )\right )^p}{(b d+2 c x d)^4}d(b d+2 c x d)^2}{4 c d}\)

\(\Big \downarrow \) 75

\(\displaystyle \frac {\left (\frac {1}{4} \left (4 a-\frac {b^2}{c}\right )+\frac {(b d+2 c d x)^2}{4 c d^2}\right )^{p+1} \operatorname {Hypergeometric2F1}\left (2,p+1,p+2,1-\frac {(b d+2 c x d)^2}{\left (b^2-4 a c\right ) d^2}\right )}{d^3 (p+1) \left (b^2-4 a c\right )^2}\)

Input:

Int[(a + b*x + c*x^2)^p/(b*d + 2*c*d*x)^3,x]
 

Output:

(((4*a - b^2/c)/4 + (b*d + 2*c*d*x)^2/(4*c*d^2))^(1 + p)*Hypergeometric2F1 
[2, 1 + p, 2 + p, 1 - (b*d + 2*c*d*x)^2/((b^2 - 4*a*c)*d^2)])/((b^2 - 4*a* 
c)^2*d^3*(1 + p))
 

Defintions of rubi rules used

rule 75
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x 
)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))*Hypergeometric2F1[-m, n + 1, n + 2, 1 + 
 d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (IntegerQ[m] 
 || GtQ[-d/(b*c), 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 1118
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[1/e   Subst[Int[x^m*(a - b^2/(4*c) + (c*x^2)/e^2)^p, x], x, 
d + e*x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[2*c*d - b*e, 0]
 
Maple [F]

\[\int \frac {\left (c \,x^{2}+b x +a \right )^{p}}{\left (2 c d x +b d \right )^{3}}d x\]

Input:

int((c*x^2+b*x+a)^p/(2*c*d*x+b*d)^3,x)
 

Output:

int((c*x^2+b*x+a)^p/(2*c*d*x+b*d)^3,x)
 

Fricas [F]

\[ \int \frac {\left (a+b x+c x^2\right )^p}{(b d+2 c d x)^3} \, dx=\int { \frac {{\left (c x^{2} + b x + a\right )}^{p}}{{\left (2 \, c d x + b d\right )}^{3}} \,d x } \] Input:

integrate((c*x^2+b*x+a)^p/(2*c*d*x+b*d)^3,x, algorithm="fricas")
 

Output:

integral((c*x^2 + b*x + a)^p/(8*c^3*d^3*x^3 + 12*b*c^2*d^3*x^2 + 6*b^2*c*d 
^3*x + b^3*d^3), x)
 

Sympy [F]

\[ \int \frac {\left (a+b x+c x^2\right )^p}{(b d+2 c d x)^3} \, dx=\frac {\int \frac {\left (a + b x + c x^{2}\right )^{p}}{b^{3} + 6 b^{2} c x + 12 b c^{2} x^{2} + 8 c^{3} x^{3}}\, dx}{d^{3}} \] Input:

integrate((c*x**2+b*x+a)**p/(2*c*d*x+b*d)**3,x)
 

Output:

Integral((a + b*x + c*x**2)**p/(b**3 + 6*b**2*c*x + 12*b*c**2*x**2 + 8*c** 
3*x**3), x)/d**3
 

Maxima [F]

\[ \int \frac {\left (a+b x+c x^2\right )^p}{(b d+2 c d x)^3} \, dx=\int { \frac {{\left (c x^{2} + b x + a\right )}^{p}}{{\left (2 \, c d x + b d\right )}^{3}} \,d x } \] Input:

integrate((c*x^2+b*x+a)^p/(2*c*d*x+b*d)^3,x, algorithm="maxima")
 

Output:

integrate((c*x^2 + b*x + a)^p/(2*c*d*x + b*d)^3, x)
 

Giac [F]

\[ \int \frac {\left (a+b x+c x^2\right )^p}{(b d+2 c d x)^3} \, dx=\int { \frac {{\left (c x^{2} + b x + a\right )}^{p}}{{\left (2 \, c d x + b d\right )}^{3}} \,d x } \] Input:

integrate((c*x^2+b*x+a)^p/(2*c*d*x+b*d)^3,x, algorithm="giac")
 

Output:

integrate((c*x^2 + b*x + a)^p/(2*c*d*x + b*d)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x+c x^2\right )^p}{(b d+2 c d x)^3} \, dx=\int \frac {{\left (c\,x^2+b\,x+a\right )}^p}{{\left (b\,d+2\,c\,d\,x\right )}^3} \,d x \] Input:

int((a + b*x + c*x^2)^p/(b*d + 2*c*d*x)^3,x)
 

Output:

int((a + b*x + c*x^2)^p/(b*d + 2*c*d*x)^3, x)
 

Reduce [F]

\[ \int \frac {\left (a+b x+c x^2\right )^p}{(b d+2 c d x)^3} \, dx=\text {too large to display} \] Input:

int((c*x^2+b*x+a)^p/(2*c*d*x+b*d)^3,x)
 

Output:

( - (a + b*x + c*x**2)**p*a + 16*int(((a + b*x + c*x**2)**p*x**2)/(4*a**2* 
b**3*c + 24*a**2*b**2*c**2*x + 48*a**2*b*c**3*x**2 + 32*a**2*c**4*x**3 - a 
*b**5*p - 6*a*b**4*c*p*x + 4*a*b**4*c*x - 12*a*b**3*c**2*p*x**2 + 28*a*b** 
3*c**2*x**2 - 8*a*b**2*c**3*p*x**3 + 72*a*b**2*c**3*x**3 + 80*a*b*c**4*x** 
4 + 32*a*c**5*x**5 - b**6*p*x - 7*b**5*c*p*x**2 - 18*b**4*c**2*p*x**3 - 20 
*b**3*c**3*p*x**4 - 8*b**2*c**4*p*x**5),x)*a**2*b**2*c**3*p + 64*int(((a + 
 b*x + c*x**2)**p*x**2)/(4*a**2*b**3*c + 24*a**2*b**2*c**2*x + 48*a**2*b*c 
**3*x**2 + 32*a**2*c**4*x**3 - a*b**5*p - 6*a*b**4*c*p*x + 4*a*b**4*c*x - 
12*a*b**3*c**2*p*x**2 + 28*a*b**3*c**2*x**2 - 8*a*b**2*c**3*p*x**3 + 72*a* 
b**2*c**3*x**3 + 80*a*b*c**4*x**4 + 32*a*c**5*x**5 - b**6*p*x - 7*b**5*c*p 
*x**2 - 18*b**4*c**2*p*x**3 - 20*b**3*c**3*p*x**4 - 8*b**2*c**4*p*x**5),x) 
*a**2*b*c**4*p*x + 64*int(((a + b*x + c*x**2)**p*x**2)/(4*a**2*b**3*c + 24 
*a**2*b**2*c**2*x + 48*a**2*b*c**3*x**2 + 32*a**2*c**4*x**3 - a*b**5*p - 6 
*a*b**4*c*p*x + 4*a*b**4*c*x - 12*a*b**3*c**2*p*x**2 + 28*a*b**3*c**2*x**2 
 - 8*a*b**2*c**3*p*x**3 + 72*a*b**2*c**3*x**3 + 80*a*b*c**4*x**4 + 32*a*c* 
*5*x**5 - b**6*p*x - 7*b**5*c*p*x**2 - 18*b**4*c**2*p*x**3 - 20*b**3*c**3* 
p*x**4 - 8*b**2*c**4*p*x**5),x)*a**2*c**5*p*x**2 - 4*int(((a + b*x + c*x** 
2)**p*x**2)/(4*a**2*b**3*c + 24*a**2*b**2*c**2*x + 48*a**2*b*c**3*x**2 + 3 
2*a**2*c**4*x**3 - a*b**5*p - 6*a*b**4*c*p*x + 4*a*b**4*c*x - 12*a*b**3*c* 
*2*p*x**2 + 28*a*b**3*c**2*x**2 - 8*a*b**2*c**3*p*x**3 + 72*a*b**2*c**3...