\(\int (d+e x)^3 (a+b x+c x^2)^2 \, dx\) [417]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 156 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^2 \, dx=\frac {\left (c d^2-b d e+a e^2\right )^2 (d+e x)^4}{4 e^5}-\frac {2 (2 c d-b e) \left (c d^2-b d e+a e^2\right ) (d+e x)^5}{5 e^5}+\frac {\left (6 c^2 d^2+b^2 e^2-2 c e (3 b d-a e)\right ) (d+e x)^6}{6 e^5}-\frac {2 c (2 c d-b e) (d+e x)^7}{7 e^5}+\frac {c^2 (d+e x)^8}{8 e^5} \] Output:

1/4*(a*e^2-b*d*e+c*d^2)^2*(e*x+d)^4/e^5-2/5*(-b*e+2*c*d)*(a*e^2-b*d*e+c*d^ 
2)*(e*x+d)^5/e^5+1/6*(6*c^2*d^2+b^2*e^2-2*c*e*(-a*e+3*b*d))*(e*x+d)^6/e^5- 
2/7*c*(-b*e+2*c*d)*(e*x+d)^7/e^5+1/8*c^2*(e*x+d)^8/e^5
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.43 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^2 \, dx=a^2 d^3 x+\frac {1}{2} a d^2 (2 b d+3 a e) x^2+\frac {1}{3} d \left (b^2 d^2+6 a b d e+a \left (2 c d^2+3 a e^2\right )\right ) x^3+\frac {1}{4} \left (2 b c d^3+3 b^2 d^2 e+6 a c d^2 e+6 a b d e^2+a^2 e^3\right ) x^4+\frac {1}{5} \left (c^2 d^3+6 c d e (b d+a e)+b e^2 (3 b d+2 a e)\right ) x^5+\frac {1}{6} e \left (3 c^2 d^2+b^2 e^2+2 c e (3 b d+a e)\right ) x^6+\frac {1}{7} c e^2 (3 c d+2 b e) x^7+\frac {1}{8} c^2 e^3 x^8 \] Input:

Integrate[(d + e*x)^3*(a + b*x + c*x^2)^2,x]
 

Output:

a^2*d^3*x + (a*d^2*(2*b*d + 3*a*e)*x^2)/2 + (d*(b^2*d^2 + 6*a*b*d*e + a*(2 
*c*d^2 + 3*a*e^2))*x^3)/3 + ((2*b*c*d^3 + 3*b^2*d^2*e + 6*a*c*d^2*e + 6*a* 
b*d*e^2 + a^2*e^3)*x^4)/4 + ((c^2*d^3 + 6*c*d*e*(b*d + a*e) + b*e^2*(3*b*d 
 + 2*a*e))*x^5)/5 + (e*(3*c^2*d^2 + b^2*e^2 + 2*c*e*(3*b*d + a*e))*x^6)/6 
+ (c*e^2*(3*c*d + 2*b*e)*x^7)/7 + (c^2*e^3*x^8)/8
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {1140, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (d+e x)^3 \left (a+b x+c x^2\right )^2 \, dx\)

\(\Big \downarrow \) 1140

\(\displaystyle \int \left (\frac {(d+e x)^5 \left (-2 c e (3 b d-a e)+b^2 e^2+6 c^2 d^2\right )}{e^4}+\frac {2 (d+e x)^4 (b e-2 c d) \left (a e^2-b d e+c d^2\right )}{e^4}+\frac {(d+e x)^3 \left (a e^2-b d e+c d^2\right )^2}{e^4}-\frac {2 c (d+e x)^6 (2 c d-b e)}{e^4}+\frac {c^2 (d+e x)^7}{e^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(d+e x)^6 \left (-2 c e (3 b d-a e)+b^2 e^2+6 c^2 d^2\right )}{6 e^5}-\frac {2 (d+e x)^5 (2 c d-b e) \left (a e^2-b d e+c d^2\right )}{5 e^5}+\frac {(d+e x)^4 \left (a e^2-b d e+c d^2\right )^2}{4 e^5}-\frac {2 c (d+e x)^7 (2 c d-b e)}{7 e^5}+\frac {c^2 (d+e x)^8}{8 e^5}\)

Input:

Int[(d + e*x)^3*(a + b*x + c*x^2)^2,x]
 

Output:

((c*d^2 - b*d*e + a*e^2)^2*(d + e*x)^4)/(4*e^5) - (2*(2*c*d - b*e)*(c*d^2 
- b*d*e + a*e^2)*(d + e*x)^5)/(5*e^5) + ((6*c^2*d^2 + b^2*e^2 - 2*c*e*(3*b 
*d - a*e))*(d + e*x)^6)/(6*e^5) - (2*c*(2*c*d - b*e)*(d + e*x)^7)/(7*e^5) 
+ (c^2*(d + e*x)^8)/(8*e^5)
 

Defintions of rubi rules used

rule 1140
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x 
_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; 
FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 0.85 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.40

method result size
default \(\frac {e^{3} c^{2} x^{8}}{8}+\frac {\left (2 e^{3} b c +3 c^{2} d \,e^{2}\right ) x^{7}}{7}+\frac {\left (3 d^{2} e \,c^{2}+6 d \,e^{2} b c +e^{3} \left (2 a c +b^{2}\right )\right ) x^{6}}{6}+\frac {\left (c^{2} d^{3}+6 d^{2} e b c +3 d \,e^{2} \left (2 a c +b^{2}\right )+2 a \,e^{3} b \right ) x^{5}}{5}+\frac {\left (2 b c \,d^{3}+3 d^{2} e \left (2 a c +b^{2}\right )+6 a b d \,e^{2}+a^{2} e^{3}\right ) x^{4}}{4}+\frac {\left (d^{3} \left (2 a c +b^{2}\right )+6 a b \,d^{2} e +3 a^{2} d \,e^{2}\right ) x^{3}}{3}+\frac {\left (3 d^{2} e \,a^{2}+2 a b \,d^{3}\right ) x^{2}}{2}+a^{2} d^{3} x\) \(219\)
norman \(\frac {e^{3} c^{2} x^{8}}{8}+\left (\frac {2}{7} e^{3} b c +\frac {3}{7} c^{2} d \,e^{2}\right ) x^{7}+\left (\frac {1}{3} a c \,e^{3}+\frac {1}{6} b^{2} e^{3}+d \,e^{2} b c +\frac {1}{2} d^{2} e \,c^{2}\right ) x^{6}+\left (\frac {2}{5} a \,e^{3} b +\frac {6}{5} a d \,e^{2} c +\frac {3}{5} d \,e^{2} b^{2}+\frac {6}{5} d^{2} e b c +\frac {1}{5} c^{2} d^{3}\right ) x^{5}+\left (\frac {1}{4} a^{2} e^{3}+\frac {3}{2} a b d \,e^{2}+\frac {3}{2} d^{2} e a c +\frac {3}{4} d^{2} e \,b^{2}+\frac {1}{2} b c \,d^{3}\right ) x^{4}+\left (a^{2} d \,e^{2}+2 a b \,d^{2} e +\frac {2}{3} a c \,d^{3}+\frac {1}{3} b^{2} d^{3}\right ) x^{3}+\left (\frac {3}{2} d^{2} e \,a^{2}+a b \,d^{3}\right ) x^{2}+a^{2} d^{3} x\) \(224\)
gosper \(\frac {1}{8} e^{3} c^{2} x^{8}+\frac {2}{7} x^{7} e^{3} b c +\frac {3}{7} d \,e^{2} c^{2} x^{7}+\frac {1}{3} x^{6} a c \,e^{3}+\frac {1}{6} b^{2} e^{3} x^{6}+x^{6} d \,e^{2} b c +\frac {1}{2} x^{6} d^{2} e \,c^{2}+\frac {2}{5} x^{5} a \,e^{3} b +\frac {6}{5} x^{5} a d \,e^{2} c +\frac {3}{5} x^{5} d \,e^{2} b^{2}+\frac {6}{5} x^{5} d^{2} e b c +\frac {1}{5} x^{5} c^{2} d^{3}+\frac {1}{4} x^{4} a^{2} e^{3}+\frac {3}{2} x^{4} a b d \,e^{2}+\frac {3}{2} x^{4} d^{2} e a c +\frac {3}{4} x^{4} d^{2} e \,b^{2}+\frac {1}{2} c b \,d^{3} x^{4}+x^{3} a^{2} d \,e^{2}+2 x^{3} a b \,d^{2} e +\frac {2}{3} a c \,d^{3} x^{3}+\frac {1}{3} b^{2} d^{3} x^{3}+\frac {3}{2} d^{2} e \,a^{2} x^{2}+a b \,d^{3} x^{2}+a^{2} d^{3} x\) \(260\)
risch \(\frac {1}{8} e^{3} c^{2} x^{8}+\frac {2}{7} x^{7} e^{3} b c +\frac {3}{7} d \,e^{2} c^{2} x^{7}+\frac {1}{3} x^{6} a c \,e^{3}+\frac {1}{6} b^{2} e^{3} x^{6}+x^{6} d \,e^{2} b c +\frac {1}{2} x^{6} d^{2} e \,c^{2}+\frac {2}{5} x^{5} a \,e^{3} b +\frac {6}{5} x^{5} a d \,e^{2} c +\frac {3}{5} x^{5} d \,e^{2} b^{2}+\frac {6}{5} x^{5} d^{2} e b c +\frac {1}{5} x^{5} c^{2} d^{3}+\frac {1}{4} x^{4} a^{2} e^{3}+\frac {3}{2} x^{4} a b d \,e^{2}+\frac {3}{2} x^{4} d^{2} e a c +\frac {3}{4} x^{4} d^{2} e \,b^{2}+\frac {1}{2} c b \,d^{3} x^{4}+x^{3} a^{2} d \,e^{2}+2 x^{3} a b \,d^{2} e +\frac {2}{3} a c \,d^{3} x^{3}+\frac {1}{3} b^{2} d^{3} x^{3}+\frac {3}{2} d^{2} e \,a^{2} x^{2}+a b \,d^{3} x^{2}+a^{2} d^{3} x\) \(260\)
parallelrisch \(\frac {1}{8} e^{3} c^{2} x^{8}+\frac {2}{7} x^{7} e^{3} b c +\frac {3}{7} d \,e^{2} c^{2} x^{7}+\frac {1}{3} x^{6} a c \,e^{3}+\frac {1}{6} b^{2} e^{3} x^{6}+x^{6} d \,e^{2} b c +\frac {1}{2} x^{6} d^{2} e \,c^{2}+\frac {2}{5} x^{5} a \,e^{3} b +\frac {6}{5} x^{5} a d \,e^{2} c +\frac {3}{5} x^{5} d \,e^{2} b^{2}+\frac {6}{5} x^{5} d^{2} e b c +\frac {1}{5} x^{5} c^{2} d^{3}+\frac {1}{4} x^{4} a^{2} e^{3}+\frac {3}{2} x^{4} a b d \,e^{2}+\frac {3}{2} x^{4} d^{2} e a c +\frac {3}{4} x^{4} d^{2} e \,b^{2}+\frac {1}{2} c b \,d^{3} x^{4}+x^{3} a^{2} d \,e^{2}+2 x^{3} a b \,d^{2} e +\frac {2}{3} a c \,d^{3} x^{3}+\frac {1}{3} b^{2} d^{3} x^{3}+\frac {3}{2} d^{2} e \,a^{2} x^{2}+a b \,d^{3} x^{2}+a^{2} d^{3} x\) \(260\)
orering \(\frac {x \left (105 c^{2} e^{3} x^{7}+240 b c \,e^{3} x^{6}+360 c^{2} d \,e^{2} x^{6}+280 a c \,e^{3} x^{5}+140 b^{2} e^{3} x^{5}+840 b c d \,e^{2} x^{5}+420 c^{2} d^{2} e \,x^{5}+336 a b \,e^{3} x^{4}+1008 a c d \,e^{2} x^{4}+504 b^{2} d \,e^{2} x^{4}+1008 b c \,d^{2} e \,x^{4}+168 c^{2} d^{3} x^{4}+210 a^{2} e^{3} x^{3}+1260 a b d \,e^{2} x^{3}+1260 a c \,d^{2} e \,x^{3}+630 b^{2} d^{2} e \,x^{3}+420 c b \,d^{3} x^{3}+840 a^{2} d \,e^{2} x^{2}+1680 a b \,d^{2} e \,x^{2}+560 a c \,d^{3} x^{2}+280 b^{2} d^{3} x^{2}+1260 a^{2} d^{2} e x +840 a b \,d^{3} x +840 a^{2} d^{3}\right )}{840}\) \(262\)

Input:

int((e*x+d)^3*(c*x^2+b*x+a)^2,x,method=_RETURNVERBOSE)
 

Output:

1/8*e^3*c^2*x^8+1/7*(2*b*c*e^3+3*c^2*d*e^2)*x^7+1/6*(3*d^2*e*c^2+6*d*e^2*b 
*c+e^3*(2*a*c+b^2))*x^6+1/5*(c^2*d^3+6*d^2*e*b*c+3*d*e^2*(2*a*c+b^2)+2*a*e 
^3*b)*x^5+1/4*(2*b*c*d^3+3*d^2*e*(2*a*c+b^2)+6*a*b*d*e^2+a^2*e^3)*x^4+1/3* 
(d^3*(2*a*c+b^2)+6*a*b*d^2*e+3*a^2*d*e^2)*x^3+1/2*(3*a^2*d^2*e+2*a*b*d^3)* 
x^2+a^2*d^3*x
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.40 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^2 \, dx=\frac {1}{8} \, c^{2} e^{3} x^{8} + \frac {1}{7} \, {\left (3 \, c^{2} d e^{2} + 2 \, b c e^{3}\right )} x^{7} + \frac {1}{6} \, {\left (3 \, c^{2} d^{2} e + 6 \, b c d e^{2} + {\left (b^{2} + 2 \, a c\right )} e^{3}\right )} x^{6} + a^{2} d^{3} x + \frac {1}{5} \, {\left (c^{2} d^{3} + 6 \, b c d^{2} e + 2 \, a b e^{3} + 3 \, {\left (b^{2} + 2 \, a c\right )} d e^{2}\right )} x^{5} + \frac {1}{4} \, {\left (2 \, b c d^{3} + 6 \, a b d e^{2} + a^{2} e^{3} + 3 \, {\left (b^{2} + 2 \, a c\right )} d^{2} e\right )} x^{4} + \frac {1}{3} \, {\left (6 \, a b d^{2} e + 3 \, a^{2} d e^{2} + {\left (b^{2} + 2 \, a c\right )} d^{3}\right )} x^{3} + \frac {1}{2} \, {\left (2 \, a b d^{3} + 3 \, a^{2} d^{2} e\right )} x^{2} \] Input:

integrate((e*x+d)^3*(c*x^2+b*x+a)^2,x, algorithm="fricas")
 

Output:

1/8*c^2*e^3*x^8 + 1/7*(3*c^2*d*e^2 + 2*b*c*e^3)*x^7 + 1/6*(3*c^2*d^2*e + 6 
*b*c*d*e^2 + (b^2 + 2*a*c)*e^3)*x^6 + a^2*d^3*x + 1/5*(c^2*d^3 + 6*b*c*d^2 
*e + 2*a*b*e^3 + 3*(b^2 + 2*a*c)*d*e^2)*x^5 + 1/4*(2*b*c*d^3 + 6*a*b*d*e^2 
 + a^2*e^3 + 3*(b^2 + 2*a*c)*d^2*e)*x^4 + 1/3*(6*a*b*d^2*e + 3*a^2*d*e^2 + 
 (b^2 + 2*a*c)*d^3)*x^3 + 1/2*(2*a*b*d^3 + 3*a^2*d^2*e)*x^2
 

Sympy [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.67 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^2 \, dx=a^{2} d^{3} x + \frac {c^{2} e^{3} x^{8}}{8} + x^{7} \cdot \left (\frac {2 b c e^{3}}{7} + \frac {3 c^{2} d e^{2}}{7}\right ) + x^{6} \left (\frac {a c e^{3}}{3} + \frac {b^{2} e^{3}}{6} + b c d e^{2} + \frac {c^{2} d^{2} e}{2}\right ) + x^{5} \cdot \left (\frac {2 a b e^{3}}{5} + \frac {6 a c d e^{2}}{5} + \frac {3 b^{2} d e^{2}}{5} + \frac {6 b c d^{2} e}{5} + \frac {c^{2} d^{3}}{5}\right ) + x^{4} \left (\frac {a^{2} e^{3}}{4} + \frac {3 a b d e^{2}}{2} + \frac {3 a c d^{2} e}{2} + \frac {3 b^{2} d^{2} e}{4} + \frac {b c d^{3}}{2}\right ) + x^{3} \left (a^{2} d e^{2} + 2 a b d^{2} e + \frac {2 a c d^{3}}{3} + \frac {b^{2} d^{3}}{3}\right ) + x^{2} \cdot \left (\frac {3 a^{2} d^{2} e}{2} + a b d^{3}\right ) \] Input:

integrate((e*x+d)**3*(c*x**2+b*x+a)**2,x)
 

Output:

a**2*d**3*x + c**2*e**3*x**8/8 + x**7*(2*b*c*e**3/7 + 3*c**2*d*e**2/7) + x 
**6*(a*c*e**3/3 + b**2*e**3/6 + b*c*d*e**2 + c**2*d**2*e/2) + x**5*(2*a*b* 
e**3/5 + 6*a*c*d*e**2/5 + 3*b**2*d*e**2/5 + 6*b*c*d**2*e/5 + c**2*d**3/5) 
+ x**4*(a**2*e**3/4 + 3*a*b*d*e**2/2 + 3*a*c*d**2*e/2 + 3*b**2*d**2*e/4 + 
b*c*d**3/2) + x**3*(a**2*d*e**2 + 2*a*b*d**2*e + 2*a*c*d**3/3 + b**2*d**3/ 
3) + x**2*(3*a**2*d**2*e/2 + a*b*d**3)
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.40 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^2 \, dx=\frac {1}{8} \, c^{2} e^{3} x^{8} + \frac {1}{7} \, {\left (3 \, c^{2} d e^{2} + 2 \, b c e^{3}\right )} x^{7} + \frac {1}{6} \, {\left (3 \, c^{2} d^{2} e + 6 \, b c d e^{2} + {\left (b^{2} + 2 \, a c\right )} e^{3}\right )} x^{6} + a^{2} d^{3} x + \frac {1}{5} \, {\left (c^{2} d^{3} + 6 \, b c d^{2} e + 2 \, a b e^{3} + 3 \, {\left (b^{2} + 2 \, a c\right )} d e^{2}\right )} x^{5} + \frac {1}{4} \, {\left (2 \, b c d^{3} + 6 \, a b d e^{2} + a^{2} e^{3} + 3 \, {\left (b^{2} + 2 \, a c\right )} d^{2} e\right )} x^{4} + \frac {1}{3} \, {\left (6 \, a b d^{2} e + 3 \, a^{2} d e^{2} + {\left (b^{2} + 2 \, a c\right )} d^{3}\right )} x^{3} + \frac {1}{2} \, {\left (2 \, a b d^{3} + 3 \, a^{2} d^{2} e\right )} x^{2} \] Input:

integrate((e*x+d)^3*(c*x^2+b*x+a)^2,x, algorithm="maxima")
 

Output:

1/8*c^2*e^3*x^8 + 1/7*(3*c^2*d*e^2 + 2*b*c*e^3)*x^7 + 1/6*(3*c^2*d^2*e + 6 
*b*c*d*e^2 + (b^2 + 2*a*c)*e^3)*x^6 + a^2*d^3*x + 1/5*(c^2*d^3 + 6*b*c*d^2 
*e + 2*a*b*e^3 + 3*(b^2 + 2*a*c)*d*e^2)*x^5 + 1/4*(2*b*c*d^3 + 6*a*b*d*e^2 
 + a^2*e^3 + 3*(b^2 + 2*a*c)*d^2*e)*x^4 + 1/3*(6*a*b*d^2*e + 3*a^2*d*e^2 + 
 (b^2 + 2*a*c)*d^3)*x^3 + 1/2*(2*a*b*d^3 + 3*a^2*d^2*e)*x^2
 

Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.66 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^2 \, dx=\frac {1}{8} \, c^{2} e^{3} x^{8} + \frac {3}{7} \, c^{2} d e^{2} x^{7} + \frac {2}{7} \, b c e^{3} x^{7} + \frac {1}{2} \, c^{2} d^{2} e x^{6} + b c d e^{2} x^{6} + \frac {1}{6} \, b^{2} e^{3} x^{6} + \frac {1}{3} \, a c e^{3} x^{6} + \frac {1}{5} \, c^{2} d^{3} x^{5} + \frac {6}{5} \, b c d^{2} e x^{5} + \frac {3}{5} \, b^{2} d e^{2} x^{5} + \frac {6}{5} \, a c d e^{2} x^{5} + \frac {2}{5} \, a b e^{3} x^{5} + \frac {1}{2} \, b c d^{3} x^{4} + \frac {3}{4} \, b^{2} d^{2} e x^{4} + \frac {3}{2} \, a c d^{2} e x^{4} + \frac {3}{2} \, a b d e^{2} x^{4} + \frac {1}{4} \, a^{2} e^{3} x^{4} + \frac {1}{3} \, b^{2} d^{3} x^{3} + \frac {2}{3} \, a c d^{3} x^{3} + 2 \, a b d^{2} e x^{3} + a^{2} d e^{2} x^{3} + a b d^{3} x^{2} + \frac {3}{2} \, a^{2} d^{2} e x^{2} + a^{2} d^{3} x \] Input:

integrate((e*x+d)^3*(c*x^2+b*x+a)^2,x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

1/8*c^2*e^3*x^8 + 3/7*c^2*d*e^2*x^7 + 2/7*b*c*e^3*x^7 + 1/2*c^2*d^2*e*x^6 
+ b*c*d*e^2*x^6 + 1/6*b^2*e^3*x^6 + 1/3*a*c*e^3*x^6 + 1/5*c^2*d^3*x^5 + 6/ 
5*b*c*d^2*e*x^5 + 3/5*b^2*d*e^2*x^5 + 6/5*a*c*d*e^2*x^5 + 2/5*a*b*e^3*x^5 
+ 1/2*b*c*d^3*x^4 + 3/4*b^2*d^2*e*x^4 + 3/2*a*c*d^2*e*x^4 + 3/2*a*b*d*e^2* 
x^4 + 1/4*a^2*e^3*x^4 + 1/3*b^2*d^3*x^3 + 2/3*a*c*d^3*x^3 + 2*a*b*d^2*e*x^ 
3 + a^2*d*e^2*x^3 + a*b*d^3*x^2 + 3/2*a^2*d^2*e*x^2 + a^2*d^3*x
 

Mupad [B] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.40 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^2 \, dx=x^4\,\left (\frac {a^2\,e^3}{4}+\frac {3\,a\,b\,d\,e^2}{2}+\frac {3\,c\,a\,d^2\,e}{2}+\frac {3\,b^2\,d^2\,e}{4}+\frac {c\,b\,d^3}{2}\right )+x^5\,\left (\frac {3\,b^2\,d\,e^2}{5}+\frac {6\,b\,c\,d^2\,e}{5}+\frac {2\,a\,b\,e^3}{5}+\frac {c^2\,d^3}{5}+\frac {6\,a\,c\,d\,e^2}{5}\right )+x^3\,\left (a^2\,d\,e^2+2\,a\,b\,d^2\,e+\frac {2\,c\,a\,d^3}{3}+\frac {b^2\,d^3}{3}\right )+x^6\,\left (\frac {b^2\,e^3}{6}+b\,c\,d\,e^2+\frac {c^2\,d^2\,e}{2}+\frac {a\,c\,e^3}{3}\right )+a^2\,d^3\,x+\frac {c^2\,e^3\,x^8}{8}+\frac {a\,d^2\,x^2\,\left (3\,a\,e+2\,b\,d\right )}{2}+\frac {c\,e^2\,x^7\,\left (2\,b\,e+3\,c\,d\right )}{7} \] Input:

int((d + e*x)^3*(a + b*x + c*x^2)^2,x)
 

Output:

x^4*((a^2*e^3)/4 + (3*b^2*d^2*e)/4 + (b*c*d^3)/2 + (3*a*b*d*e^2)/2 + (3*a* 
c*d^2*e)/2) + x^5*((c^2*d^3)/5 + (3*b^2*d*e^2)/5 + (2*a*b*e^3)/5 + (6*a*c* 
d*e^2)/5 + (6*b*c*d^2*e)/5) + x^3*((b^2*d^3)/3 + a^2*d*e^2 + (2*a*c*d^3)/3 
 + 2*a*b*d^2*e) + x^6*((b^2*e^3)/6 + (c^2*d^2*e)/2 + (a*c*e^3)/3 + b*c*d*e 
^2) + a^2*d^3*x + (c^2*e^3*x^8)/8 + (a*d^2*x^2*(3*a*e + 2*b*d))/2 + (c*e^2 
*x^7*(2*b*e + 3*c*d))/7
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.67 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^2 \, dx=\frac {x \left (105 c^{2} e^{3} x^{7}+240 b c \,e^{3} x^{6}+360 c^{2} d \,e^{2} x^{6}+280 a c \,e^{3} x^{5}+140 b^{2} e^{3} x^{5}+840 b c d \,e^{2} x^{5}+420 c^{2} d^{2} e \,x^{5}+336 a b \,e^{3} x^{4}+1008 a c d \,e^{2} x^{4}+504 b^{2} d \,e^{2} x^{4}+1008 b c \,d^{2} e \,x^{4}+168 c^{2} d^{3} x^{4}+210 a^{2} e^{3} x^{3}+1260 a b d \,e^{2} x^{3}+1260 a c \,d^{2} e \,x^{3}+630 b^{2} d^{2} e \,x^{3}+420 b c \,d^{3} x^{3}+840 a^{2} d \,e^{2} x^{2}+1680 a b \,d^{2} e \,x^{2}+560 a c \,d^{3} x^{2}+280 b^{2} d^{3} x^{2}+1260 a^{2} d^{2} e x +840 a b \,d^{3} x +840 a^{2} d^{3}\right )}{840} \] Input:

int((e*x+d)^3*(c*x^2+b*x+a)^2,x)
 

Output:

(x*(840*a**2*d**3 + 1260*a**2*d**2*e*x + 840*a**2*d*e**2*x**2 + 210*a**2*e 
**3*x**3 + 840*a*b*d**3*x + 1680*a*b*d**2*e*x**2 + 1260*a*b*d*e**2*x**3 + 
336*a*b*e**3*x**4 + 560*a*c*d**3*x**2 + 1260*a*c*d**2*e*x**3 + 1008*a*c*d* 
e**2*x**4 + 280*a*c*e**3*x**5 + 280*b**2*d**3*x**2 + 630*b**2*d**2*e*x**3 
+ 504*b**2*d*e**2*x**4 + 140*b**2*e**3*x**5 + 420*b*c*d**3*x**3 + 1008*b*c 
*d**2*e*x**4 + 840*b*c*d*e**2*x**5 + 240*b*c*e**3*x**6 + 168*c**2*d**3*x** 
4 + 420*c**2*d**2*e*x**5 + 360*c**2*d*e**2*x**6 + 105*c**2*e**3*x**7))/840