\(\int (d+e x)^3 (a+b x+c x^2)^{3/4} \, dx\) [728]

Optimal result
Mathematica [C] (verified)
Rubi [B] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 292 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^{3/4} \, dx=\frac {(2 c d-b e) \left (12 c^2 d^2+5 b^2 e^2-4 c e (3 b d+2 a e)\right ) (b+2 c x) \left (a+b x+c x^2\right )^{3/4}}{120 c^4}+\frac {2 e (d+e x)^2 \left (a+b x+c x^2\right )^{7/4}}{11 c}+\frac {e \left (312 c^2 d^2+55 b^2 e^2-2 c e (121 b d+24 a e)+70 c e (2 c d-b e) x\right ) \left (a+b x+c x^2\right )^{7/4}}{462 c^3}-\frac {\left (b^2-4 a c\right )^{3/2} (2 c d-b e) \left (12 c^2 d^2+5 b^2 e^2-4 c e (3 b d+2 a e)\right ) \sqrt [4]{-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\frac {1}{2} \arcsin \left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )\right |2\right )}{80 \sqrt {2} c^5 \sqrt [4]{a+b x+c x^2}} \] Output:

1/120*(-b*e+2*c*d)*(12*c^2*d^2+5*b^2*e^2-4*c*e*(2*a*e+3*b*d))*(2*c*x+b)*(c 
*x^2+b*x+a)^(3/4)/c^4+2/11*e*(e*x+d)^2*(c*x^2+b*x+a)^(7/4)/c+1/462*e*(312* 
c^2*d^2+55*b^2*e^2-2*c*e*(24*a*e+121*b*d)+70*c*e*(-b*e+2*c*d)*x)*(c*x^2+b* 
x+a)^(7/4)/c^3-1/160*(-4*a*c+b^2)^(3/2)*(-b*e+2*c*d)*(12*c^2*d^2+5*b^2*e^2 
-4*c*e*(2*a*e+3*b*d))*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/4)*EllipticE(sin( 
1/2*arcsin((2*c*x+b)/(-4*a*c+b^2)^(1/2))),2^(1/2))*2^(1/2)/c^5/(c*x^2+b*x+ 
a)^(1/4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.53 (sec) , antiderivative size = 234, normalized size of antiderivative = 0.80 \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^{3/4} \, dx=\frac {13440 c^4 e (d+e x)^2 (a+x (b+c x))^2+160 c^2 e (a+x (b+c x))^2 \left (55 b^2 e^2+4 c^2 d (78 d+35 e x)-2 c e (121 b d+24 a e+35 b e x)\right )+77 (2 c d-b e) \left (12 c^2 d^2+5 b^2 e^2-4 c e (3 b d+2 a e)\right ) (b+2 c x) \left (8 c (a+x (b+c x))-3 \sqrt {2} \left (b^2-4 a c\right ) \sqrt [4]{\frac {c (a+x (b+c x))}{-b^2+4 a c}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {3}{2},\frac {(b+2 c x)^2}{b^2-4 a c}\right )\right )}{73920 c^5 \sqrt [4]{a+x (b+c x)}} \] Input:

Integrate[(d + e*x)^3*(a + b*x + c*x^2)^(3/4),x]
 

Output:

(13440*c^4*e*(d + e*x)^2*(a + x*(b + c*x))^2 + 160*c^2*e*(a + x*(b + c*x)) 
^2*(55*b^2*e^2 + 4*c^2*d*(78*d + 35*e*x) - 2*c*e*(121*b*d + 24*a*e + 35*b* 
e*x)) + 77*(2*c*d - b*e)*(12*c^2*d^2 + 5*b^2*e^2 - 4*c*e*(3*b*d + 2*a*e))* 
(b + 2*c*x)*(8*c*(a + x*(b + c*x)) - 3*Sqrt[2]*(b^2 - 4*a*c)*((c*(a + x*(b 
 + c*x)))/(-b^2 + 4*a*c))^(1/4)*Hypergeometric2F1[1/4, 1/2, 3/2, (b + 2*c* 
x)^2/(b^2 - 4*a*c)]))/(73920*c^5*(a + x*(b + c*x))^(1/4))
 

Rubi [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(727\) vs. \(2(292)=584\).

Time = 0.76 (sec) , antiderivative size = 727, normalized size of antiderivative = 2.49, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {1166, 27, 1225, 1087, 1094, 834, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (d+e x)^3 \left (a+b x+c x^2\right )^{3/4} \, dx\)

\(\Big \downarrow \) 1166

\(\displaystyle \frac {2 \int \frac {1}{4} (d+e x) \left (22 c d^2-7 b e d-8 a e^2+15 e (2 c d-b e) x\right ) \left (c x^2+b x+a\right )^{3/4}dx}{11 c}+\frac {2 e (d+e x)^2 \left (a+b x+c x^2\right )^{7/4}}{11 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int (d+e x) \left (22 c d^2-7 b e d-8 a e^2+15 e (2 c d-b e) x\right ) \left (c x^2+b x+a\right )^{3/4}dx}{22 c}+\frac {2 e (d+e x)^2 \left (a+b x+c x^2\right )^{7/4}}{11 c}\)

\(\Big \downarrow \) 1225

\(\displaystyle \frac {\frac {11 (2 c d-b e) \left (-4 c e (2 a e+3 b d)+5 b^2 e^2+12 c^2 d^2\right ) \int \left (c x^2+b x+a\right )^{3/4}dx}{12 c^2}+\frac {e \left (a+b x+c x^2\right )^{7/4} \left (-2 c e (24 a e+121 b d)+55 b^2 e^2+70 c e x (2 c d-b e)+312 c^2 d^2\right )}{21 c^2}}{22 c}+\frac {2 e (d+e x)^2 \left (a+b x+c x^2\right )^{7/4}}{11 c}\)

\(\Big \downarrow \) 1087

\(\displaystyle \frac {\frac {11 (2 c d-b e) \left (-4 c e (2 a e+3 b d)+5 b^2 e^2+12 c^2 d^2\right ) \left (\frac {(b+2 c x) \left (a+b x+c x^2\right )^{3/4}}{5 c}-\frac {3 \left (b^2-4 a c\right ) \int \frac {1}{\sqrt [4]{c x^2+b x+a}}dx}{20 c}\right )}{12 c^2}+\frac {e \left (a+b x+c x^2\right )^{7/4} \left (-2 c e (24 a e+121 b d)+55 b^2 e^2+70 c e x (2 c d-b e)+312 c^2 d^2\right )}{21 c^2}}{22 c}+\frac {2 e (d+e x)^2 \left (a+b x+c x^2\right )^{7/4}}{11 c}\)

\(\Big \downarrow \) 1094

\(\displaystyle \frac {\frac {11 (2 c d-b e) \left (-4 c e (2 a e+3 b d)+5 b^2 e^2+12 c^2 d^2\right ) \left (\frac {(b+2 c x) \left (a+b x+c x^2\right )^{3/4}}{5 c}-\frac {3 \left (b^2-4 a c\right ) \sqrt {(b+2 c x)^2} \int \frac {\sqrt {c x^2+b x+a}}{\sqrt {b^2-4 a c+4 c \left (c x^2+b x+a\right )}}d\sqrt [4]{c x^2+b x+a}}{5 c (b+2 c x)}\right )}{12 c^2}+\frac {e \left (a+b x+c x^2\right )^{7/4} \left (-2 c e (24 a e+121 b d)+55 b^2 e^2+70 c e x (2 c d-b e)+312 c^2 d^2\right )}{21 c^2}}{22 c}+\frac {2 e (d+e x)^2 \left (a+b x+c x^2\right )^{7/4}}{11 c}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {\frac {11 (2 c d-b e) \left (-4 c e (2 a e+3 b d)+5 b^2 e^2+12 c^2 d^2\right ) \left (\frac {(b+2 c x) \left (a+b x+c x^2\right )^{3/4}}{5 c}-\frac {3 \left (b^2-4 a c\right ) \sqrt {(b+2 c x)^2} \left (\frac {\sqrt {b^2-4 a c} \int \frac {1}{\sqrt {b^2-4 a c+4 c \left (c x^2+b x+a\right )}}d\sqrt [4]{c x^2+b x+a}}{2 \sqrt {c}}-\frac {\sqrt {b^2-4 a c} \int \frac {1-\frac {2 \sqrt {c} \sqrt {c x^2+b x+a}}{\sqrt {b^2-4 a c}}}{\sqrt {b^2-4 a c+4 c \left (c x^2+b x+a\right )}}d\sqrt [4]{c x^2+b x+a}}{2 \sqrt {c}}\right )}{5 c (b+2 c x)}\right )}{12 c^2}+\frac {e \left (a+b x+c x^2\right )^{7/4} \left (-2 c e (24 a e+121 b d)+55 b^2 e^2+70 c e x (2 c d-b e)+312 c^2 d^2\right )}{21 c^2}}{22 c}+\frac {2 e (d+e x)^2 \left (a+b x+c x^2\right )^{7/4}}{11 c}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\frac {11 (2 c d-b e) \left (-4 c e (2 a e+3 b d)+5 b^2 e^2+12 c^2 d^2\right ) \left (\frac {(b+2 c x) \left (a+b x+c x^2\right )^{3/4}}{5 c}-\frac {3 \left (b^2-4 a c\right ) \sqrt {(b+2 c x)^2} \left (\frac {\left (b^2-4 a c\right )^{3/4} \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right ) \sqrt {\frac {4 c \left (a+b x+c x^2\right )-4 a c+b^2}{\left (b^2-4 a c\right ) \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{c x^2+b x+a}}{\sqrt [4]{b^2-4 a c}}\right ),\frac {1}{2}\right )}{4 \sqrt {2} c^{3/4} \sqrt {4 c \left (a+b x+c x^2\right )-4 a c+b^2}}-\frac {\sqrt {b^2-4 a c} \int \frac {1-\frac {2 \sqrt {c} \sqrt {c x^2+b x+a}}{\sqrt {b^2-4 a c}}}{\sqrt {b^2-4 a c+4 c \left (c x^2+b x+a\right )}}d\sqrt [4]{c x^2+b x+a}}{2 \sqrt {c}}\right )}{5 c (b+2 c x)}\right )}{12 c^2}+\frac {e \left (a+b x+c x^2\right )^{7/4} \left (-2 c e (24 a e+121 b d)+55 b^2 e^2+70 c e x (2 c d-b e)+312 c^2 d^2\right )}{21 c^2}}{22 c}+\frac {2 e (d+e x)^2 \left (a+b x+c x^2\right )^{7/4}}{11 c}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {\frac {11 (2 c d-b e) \left (-4 c e (2 a e+3 b d)+5 b^2 e^2+12 c^2 d^2\right ) \left (\frac {(b+2 c x) \left (a+b x+c x^2\right )^{3/4}}{5 c}-\frac {3 \left (b^2-4 a c\right ) \sqrt {(b+2 c x)^2} \left (\frac {\left (b^2-4 a c\right )^{3/4} \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right ) \sqrt {\frac {4 c \left (a+b x+c x^2\right )-4 a c+b^2}{\left (b^2-4 a c\right ) \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{c x^2+b x+a}}{\sqrt [4]{b^2-4 a c}}\right ),\frac {1}{2}\right )}{4 \sqrt {2} c^{3/4} \sqrt {4 c \left (a+b x+c x^2\right )-4 a c+b^2}}-\frac {\sqrt {b^2-4 a c} \left (\frac {\sqrt [4]{b^2-4 a c} \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right ) \sqrt {\frac {4 c \left (a+b x+c x^2\right )-4 a c+b^2}{\left (b^2-4 a c\right ) \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right )^2}} E\left (2 \arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{c x^2+b x+a}}{\sqrt [4]{b^2-4 a c}}\right )|\frac {1}{2}\right )}{\sqrt {2} \sqrt [4]{c} \sqrt {4 c \left (a+b x+c x^2\right )-4 a c+b^2}}-\frac {\sqrt [4]{a+b x+c x^2} \sqrt {4 c \left (a+b x+c x^2\right )-4 a c+b^2}}{\left (b^2-4 a c\right ) \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right )}\right )}{2 \sqrt {c}}\right )}{5 c (b+2 c x)}\right )}{12 c^2}+\frac {e \left (a+b x+c x^2\right )^{7/4} \left (-2 c e (24 a e+121 b d)+55 b^2 e^2+70 c e x (2 c d-b e)+312 c^2 d^2\right )}{21 c^2}}{22 c}+\frac {2 e (d+e x)^2 \left (a+b x+c x^2\right )^{7/4}}{11 c}\)

Input:

Int[(d + e*x)^3*(a + b*x + c*x^2)^(3/4),x]
 

Output:

(2*e*(d + e*x)^2*(a + b*x + c*x^2)^(7/4))/(11*c) + ((e*(312*c^2*d^2 + 55*b 
^2*e^2 - 2*c*e*(121*b*d + 24*a*e) + 70*c*e*(2*c*d - b*e)*x)*(a + b*x + c*x 
^2)^(7/4))/(21*c^2) + (11*(2*c*d - b*e)*(12*c^2*d^2 + 5*b^2*e^2 - 4*c*e*(3 
*b*d + 2*a*e))*(((b + 2*c*x)*(a + b*x + c*x^2)^(3/4))/(5*c) - (3*(b^2 - 4* 
a*c)*Sqrt[(b + 2*c*x)^2]*(-1/2*(Sqrt[b^2 - 4*a*c]*(-(((a + b*x + c*x^2)^(1 
/4)*Sqrt[b^2 - 4*a*c + 4*c*(a + b*x + c*x^2)])/((b^2 - 4*a*c)*(1 + (2*Sqrt 
[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c]))) + ((b^2 - 4*a*c)^(1/4)*(1 
+ (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])*Sqrt[(b^2 - 4*a*c + 
 4*c*(a + b*x + c*x^2))/((b^2 - 4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^ 
2])/Sqrt[b^2 - 4*a*c])^2)]*EllipticE[2*ArcTan[(Sqrt[2]*c^(1/4)*(a + b*x + 
c*x^2)^(1/4))/(b^2 - 4*a*c)^(1/4)], 1/2])/(Sqrt[2]*c^(1/4)*Sqrt[b^2 - 4*a* 
c + 4*c*(a + b*x + c*x^2)])))/Sqrt[c] + ((b^2 - 4*a*c)^(3/4)*(1 + (2*Sqrt[ 
c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])*Sqrt[(b^2 - 4*a*c + 4*c*(a + 
b*x + c*x^2))/((b^2 - 4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b 
^2 - 4*a*c])^2)]*EllipticF[2*ArcTan[(Sqrt[2]*c^(1/4)*(a + b*x + c*x^2)^(1/ 
4))/(b^2 - 4*a*c)^(1/4)], 1/2])/(4*Sqrt[2]*c^(3/4)*Sqrt[b^2 - 4*a*c + 4*c* 
(a + b*x + c*x^2)])))/(5*c*(b + 2*c*x))))/(12*c^2))/(22*c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1087
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^p/(2*c*(2*p + 1))), x] - Simp[p*((b^2 - 4*a*c)/(2*c*(2* 
p + 1)))   Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && 
GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[3*p])
 

rule 1094
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[4*(Sqrt[(b 
+ 2*c*x)^2]/(b + 2*c*x))   Subst[Int[x^(4*(p + 1) - 1)/Sqrt[b^2 - 4*a*c + 4 
*c*x^4], x], x, (a + b*x + c*x^2)^(1/4)], x] /; FreeQ[{a, b, c}, x] && Inte 
gerQ[4*p]
 

rule 1166
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[e*(d + e*x)^(m - 1)*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 
 1))), x] + Simp[1/(c*(m + 2*p + 1))   Int[(d + e*x)^(m - 2)*Simp[c*d^2*(m 
+ 2*p + 1) - e*(a*e*(m - 1) + b*d*(p + 1)) + e*(2*c*d - b*e)*(m + p)*x, x]* 
(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && If[Ration 
alQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadrat 
icQ[a, b, c, d, e, m, p, x]
 

rule 1225
Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*( 
x_)^2)^(p_), x_Symbol] :> Simp[(-(b*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 
 2*c*e*g*(p + 1)*x))*((a + b*x + c*x^2)^(p + 1)/(2*c^2*(p + 1)*(2*p + 3))), 
 x] + Simp[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p 
+ 3))/(2*c^2*(2*p + 3))   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, p}, x] &&  !LeQ[p, -1]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
Maple [F]

\[\int \left (e x +d \right )^{3} \left (c \,x^{2}+b x +a \right )^{\frac {3}{4}}d x\]

Input:

int((e*x+d)^3*(c*x^2+b*x+a)^(3/4),x)
 

Output:

int((e*x+d)^3*(c*x^2+b*x+a)^(3/4),x)
 

Fricas [F]

\[ \int (d+e x)^3 \left (a+b x+c x^2\right )^{3/4} \, dx=\int { {\left (c x^{2} + b x + a\right )}^{\frac {3}{4}} {\left (e x + d\right )}^{3} \,d x } \] Input:

integrate((e*x+d)^3*(c*x^2+b*x+a)^(3/4),x, algorithm="fricas")
 

Output:

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)*(c*x^2 + b*x + a)^(3/4) 
, x)
 

Sympy [F]

\[ \int (d+e x)^3 \left (a+b x+c x^2\right )^{3/4} \, dx=\int \left (d + e x\right )^{3} \left (a + b x + c x^{2}\right )^{\frac {3}{4}}\, dx \] Input:

integrate((e*x+d)**3*(c*x**2+b*x+a)**(3/4),x)
 

Output:

Integral((d + e*x)**3*(a + b*x + c*x**2)**(3/4), x)
 

Maxima [F]

\[ \int (d+e x)^3 \left (a+b x+c x^2\right )^{3/4} \, dx=\int { {\left (c x^{2} + b x + a\right )}^{\frac {3}{4}} {\left (e x + d\right )}^{3} \,d x } \] Input:

integrate((e*x+d)^3*(c*x^2+b*x+a)^(3/4),x, algorithm="maxima")
 

Output:

integrate((c*x^2 + b*x + a)^(3/4)*(e*x + d)^3, x)
                                                                                    
                                                                                    
 

Giac [F]

\[ \int (d+e x)^3 \left (a+b x+c x^2\right )^{3/4} \, dx=\int { {\left (c x^{2} + b x + a\right )}^{\frac {3}{4}} {\left (e x + d\right )}^{3} \,d x } \] Input:

integrate((e*x+d)^3*(c*x^2+b*x+a)^(3/4),x, algorithm="giac")
 

Output:

integrate((c*x^2 + b*x + a)^(3/4)*(e*x + d)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int (d+e x)^3 \left (a+b x+c x^2\right )^{3/4} \, dx=\int {\left (d+e\,x\right )}^3\,{\left (c\,x^2+b\,x+a\right )}^{3/4} \,d x \] Input:

int((d + e*x)^3*(a + b*x + c*x^2)^(3/4),x)
 

Output:

int((d + e*x)^3*(a + b*x + c*x^2)^(3/4), x)
 

Reduce [F]

\[ \int (d+e x)^3 \left (a+b x+c x^2\right )^{3/4} \, dx =\text {Too large to display} \] Input:

int((e*x+d)^3*(c*x^2+b*x+a)^(3/4),x)
 

Output:

(3008*(a + b*x + c*x**2)**(3/4)*a**2*b*c*e**3 - 9856*(a + b*x + c*x**2)**( 
3/4)*a**2*c**2*d*e**2 - 880*(a + b*x + c*x**2)**(3/4)*a*b**3*e**3 + 3872*( 
a + b*x + c*x**2)**(3/4)*a*b**2*c*d*e**2 - 2256*(a + b*x + c*x**2)**(3/4)* 
a*b**2*c*e**3*x - 6336*(a + b*x + c*x**2)**(3/4)*a*b*c**2*d**2*e + 7392*(a 
 + b*x + c*x**2)**(3/4)*a*b*c**2*d*e**2*x + 1440*(a + b*x + c*x**2)**(3/4) 
*a*b*c**2*e**3*x**2 + 14784*(a + b*x + c*x**2)**(3/4)*a*c**3*d**3 + 660*(a 
 + b*x + c*x**2)**(3/4)*b**4*e**3*x - 2904*(a + b*x + c*x**2)**(3/4)*b**3* 
c*d*e**2*x - 600*(a + b*x + c*x**2)**(3/4)*b**3*c*e**3*x**2 + 4752*(a + b* 
x + c*x**2)**(3/4)*b**2*c**2*d**2*e*x + 2640*(a + b*x + c*x**2)**(3/4)*b** 
2*c**2*d*e**2*x**2 + 560*(a + b*x + c*x**2)**(3/4)*b**2*c**2*e**3*x**3 + 7 
392*(a + b*x + c*x**2)**(3/4)*b*c**3*d**3*x + 15840*(a + b*x + c*x**2)**(3 
/4)*b*c**3*d**2*e*x**2 + 12320*(a + b*x + c*x**2)**(3/4)*b*c**3*d*e**2*x** 
3 + 3360*(a + b*x + c*x**2)**(3/4)*b*c**3*e**3*x**4 - 7392*int(((a + b*x + 
 c*x**2)**(3/4)*x)/(a + b*x + c*x**2),x)*a**2*b*c**2*e**3 + 14784*int(((a 
+ b*x + c*x**2)**(3/4)*x)/(a + b*x + c*x**2),x)*a**2*c**3*d*e**2 + 6468*in 
t(((a + b*x + c*x**2)**(3/4)*x)/(a + b*x + c*x**2),x)*a*b**3*c*e**3 - 2402 
4*int(((a + b*x + c*x**2)**(3/4)*x)/(a + b*x + c*x**2),x)*a*b**2*c**2*d*e* 
*2 + 33264*int(((a + b*x + c*x**2)**(3/4)*x)/(a + b*x + c*x**2),x)*a*b*c** 
3*d**2*e - 22176*int(((a + b*x + c*x**2)**(3/4)*x)/(a + b*x + c*x**2),x)*a 
*c**4*d**3 - 1155*int(((a + b*x + c*x**2)**(3/4)*x)/(a + b*x + c*x**2),...