\(\int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx\) [770]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 189 \[ \int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx=\frac {(d+e x)^{1+m} \sqrt {1-\frac {2 c (d+e x)}{2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}} \sqrt {1-\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \operatorname {AppellF1}\left (1+m,\frac {1}{2},\frac {1}{2},2+m,\frac {2 c (d+e x)}{2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e},\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{e (1+m) \sqrt {a+b x+c x^2}} \] Output:

(e*x+d)^(1+m)*(1-2*c*(e*x+d)/(2*c*d-(b-(-4*a*c+b^2)^(1/2))*e))^(1/2)*(1-2* 
c*(e*x+d)/(2*c*d-(b+(-4*a*c+b^2)^(1/2))*e))^(1/2)*AppellF1(1+m,1/2,1/2,2+m 
,2*c*(e*x+d)/(2*c*d-(b-(-4*a*c+b^2)^(1/2))*e),2*c*(e*x+d)/(2*c*d-(b+(-4*a* 
c+b^2)^(1/2))*e))/e/(1+m)/(c*x^2+b*x+a)^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 0.93 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.10 \[ \int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx=\frac {\sqrt {\frac {e \left (-b+\sqrt {b^2-4 a c}-2 c x\right )}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {\frac {e \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} (d+e x)^{1+m} \operatorname {AppellF1}\left (1+m,\frac {1}{2},\frac {1}{2},2+m,\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e},\frac {2 c (d+e x)}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}\right )}{e (1+m) \sqrt {a+x (b+c x)}} \] Input:

Integrate[(d + e*x)^m/Sqrt[a + b*x + c*x^2],x]
 

Output:

(Sqrt[(e*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x))/(2*c*d + (-b + Sqrt[b^2 - 4*a*c 
])*e)]*Sqrt[(e*(b + Sqrt[b^2 - 4*a*c] + 2*c*x))/(-2*c*d + (b + Sqrt[b^2 - 
4*a*c])*e)]*(d + e*x)^(1 + m)*AppellF1[1 + m, 1/2, 1/2, 2 + m, (2*c*(d + e 
*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e), (2*c*(d + e*x))/(2*c*d + (-b + S 
qrt[b^2 - 4*a*c])*e)])/(e*(1 + m)*Sqrt[a + x*(b + c*x)])
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1179, 150}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx\)

\(\Big \downarrow \) 1179

\(\displaystyle \frac {\sqrt {1-\frac {2 c (d+e x)}{2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}} \sqrt {1-\frac {2 c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \int \frac {(d+e x)^m}{\sqrt {1-\frac {2 c (d+e x)}{2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}} \sqrt {1-\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}}d(d+e x)}{e \sqrt {a+b x+c x^2}}\)

\(\Big \downarrow \) 150

\(\displaystyle \frac {(d+e x)^{m+1} \sqrt {1-\frac {2 c (d+e x)}{2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}} \sqrt {1-\frac {2 c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \operatorname {AppellF1}\left (m+1,\frac {1}{2},\frac {1}{2},m+2,\frac {2 c (d+e x)}{2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e},\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{e (m+1) \sqrt {a+b x+c x^2}}\)

Input:

Int[(d + e*x)^m/Sqrt[a + b*x + c*x^2],x]
 

Output:

((d + e*x)^(1 + m)*Sqrt[1 - (2*c*(d + e*x))/(2*c*d - (b - Sqrt[b^2 - 4*a*c 
])*e)]*Sqrt[1 - (2*c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Appel 
lF1[1 + m, 1/2, 1/2, 2 + m, (2*c*(d + e*x))/(2*c*d - (b - Sqrt[b^2 - 4*a*c 
])*e), (2*c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(e*(1 + m)*Sq 
rt[a + b*x + c*x^2])
 

Defintions of rubi rules used

rule 150
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^n*e^p*((b*x)^(m + 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2 
, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] &&  !In 
tegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])
 

rule 1179
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(a + b*x + c*x^2)^p/(e*(1 - ( 
d + e*x)/(d - e*((b - q)/(2*c))))^p*(1 - (d + e*x)/(d - e*((b + q)/(2*c)))) 
^p)   Subst[Int[x^m*Simp[1 - x/(d - e*((b - q)/(2*c))), x]^p*Simp[1 - x/(d 
- e*((b + q)/(2*c))), x]^p, x], x, d + e*x], x]] /; FreeQ[{a, b, c, d, e, m 
, p}, x]
 
Maple [F]

\[\int \frac {\left (e x +d \right )^{m}}{\sqrt {c \,x^{2}+b x +a}}d x\]

Input:

int((e*x+d)^m/(c*x^2+b*x+a)^(1/2),x)
 

Output:

int((e*x+d)^m/(c*x^2+b*x+a)^(1/2),x)
 

Fricas [F]

\[ \int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx=\int { \frac {{\left (e x + d\right )}^{m}}{\sqrt {c x^{2} + b x + a}} \,d x } \] Input:

integrate((e*x+d)^m/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")
 

Output:

integral((e*x + d)^m/sqrt(c*x^2 + b*x + a), x)
 

Sympy [F]

\[ \int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx=\int \frac {\left (d + e x\right )^{m}}{\sqrt {a + b x + c x^{2}}}\, dx \] Input:

integrate((e*x+d)**m/(c*x**2+b*x+a)**(1/2),x)
 

Output:

Integral((d + e*x)**m/sqrt(a + b*x + c*x**2), x)
 

Maxima [F]

\[ \int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx=\int { \frac {{\left (e x + d\right )}^{m}}{\sqrt {c x^{2} + b x + a}} \,d x } \] Input:

integrate((e*x+d)^m/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate((e*x + d)^m/sqrt(c*x^2 + b*x + a), x)
 

Giac [F]

\[ \int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx=\int { \frac {{\left (e x + d\right )}^{m}}{\sqrt {c x^{2} + b x + a}} \,d x } \] Input:

integrate((e*x+d)^m/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")
 

Output:

integrate((e*x + d)^m/sqrt(c*x^2 + b*x + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx=\int \frac {{\left (d+e\,x\right )}^m}{\sqrt {c\,x^2+b\,x+a}} \,d x \] Input:

int((d + e*x)^m/(a + b*x + c*x^2)^(1/2),x)
 

Output:

int((d + e*x)^m/(a + b*x + c*x^2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {(d+e x)^m}{\sqrt {a+b x+c x^2}} \, dx=\int \frac {\left (e x +d \right )^{m}}{\sqrt {c \,x^{2}+b x +a}}d x \] Input:

int((e*x+d)^m/(c*x^2+b*x+a)^(1/2),x)
 

Output:

int((d + e*x)**m/sqrt(a + b*x + c*x**2),x)