\(\int (d+e x)^{-2 p} (a+b x+c x^2)^p \, dx\) [786]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 195 \[ \int (d+e x)^{-2 p} \left (a+b x+c x^2\right )^p \, dx=\frac {(d+e x)^{1-2 p} \left (a+b x+c x^2\right )^p \left (1-\frac {2 c (d+e x)}{2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}\right )^{-p} \left (1-\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )^{-p} \operatorname {AppellF1}\left (1-2 p,-p,-p,2-2 p,\frac {2 c (d+e x)}{2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e},\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{e (1-2 p)} \] Output:

(e*x+d)^(1-2*p)*(c*x^2+b*x+a)^p*AppellF1(1-2*p,-p,-p,2-2*p,2*c*(e*x+d)/(2* 
c*d-(b-(-4*a*c+b^2)^(1/2))*e),2*c*(e*x+d)/(2*c*d-(b+(-4*a*c+b^2)^(1/2))*e) 
)/e/(1-2*p)/((1-2*c*(e*x+d)/(2*c*d-(b-(-4*a*c+b^2)^(1/2))*e))^p)/((1-2*c*( 
e*x+d)/(2*c*d-(b+(-4*a*c+b^2)^(1/2))*e))^p)
 

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.10 \[ \int (d+e x)^{-2 p} \left (a+b x+c x^2\right )^p \, dx=-\frac {\left (\frac {e \left (-b+\sqrt {b^2-4 a c}-2 c x\right )}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}\right )^{-p} \left (\frac {e \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}\right )^{-p} (d+e x)^{1-2 p} (a+x (b+c x))^p \operatorname {AppellF1}\left (1-2 p,-p,-p,2-2 p,\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e},\frac {2 c (d+e x)}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}\right )}{e (-1+2 p)} \] Input:

Integrate[(a + b*x + c*x^2)^p/(d + e*x)^(2*p),x]
 

Output:

-(((d + e*x)^(1 - 2*p)*(a + x*(b + c*x))^p*AppellF1[1 - 2*p, -p, -p, 2 - 2 
*p, (2*c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e), (2*c*(d + e*x))/( 
2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)])/(e*(-1 + 2*p)*((e*(-b + Sqrt[b^2 - 4 
*a*c] - 2*c*x))/(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e))^p*((e*(b + Sqrt[b^2 
- 4*a*c] + 2*c*x))/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e))^p))
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1179, 150}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (d+e x)^{-2 p} \left (a+b x+c x^2\right )^p \, dx\)

\(\Big \downarrow \) 1179

\(\displaystyle \frac {\left (a+b x+c x^2\right )^p \left (1-\frac {2 c (d+e x)}{2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}\right )^{-p} \left (1-\frac {2 c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}\right )^{-p} \int (d+e x)^{-2 p} \left (1-\frac {2 c (d+e x)}{2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}\right )^p \left (1-\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )^pd(d+e x)}{e}\)

\(\Big \downarrow \) 150

\(\displaystyle \frac {(d+e x)^{1-2 p} \left (a+b x+c x^2\right )^p \left (1-\frac {2 c (d+e x)}{2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}\right )^{-p} \left (1-\frac {2 c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}\right )^{-p} \operatorname {AppellF1}\left (1-2 p,-p,-p,2-2 p,\frac {2 c (d+e x)}{2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e},\frac {2 c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{e (1-2 p)}\)

Input:

Int[(a + b*x + c*x^2)^p/(d + e*x)^(2*p),x]
 

Output:

((d + e*x)^(1 - 2*p)*(a + b*x + c*x^2)^p*AppellF1[1 - 2*p, -p, -p, 2 - 2*p 
, (2*c*(d + e*x))/(2*c*d - (b - Sqrt[b^2 - 4*a*c])*e), (2*c*(d + e*x))/(2* 
c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(e*(1 - 2*p)*(1 - (2*c*(d + e*x))/(2*c* 
d - (b - Sqrt[b^2 - 4*a*c])*e))^p*(1 - (2*c*(d + e*x))/(2*c*d - (b + Sqrt[ 
b^2 - 4*a*c])*e))^p)
 

Defintions of rubi rules used

rule 150
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^n*e^p*((b*x)^(m + 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2 
, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] &&  !In 
tegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])
 

rule 1179
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(a + b*x + c*x^2)^p/(e*(1 - ( 
d + e*x)/(d - e*((b - q)/(2*c))))^p*(1 - (d + e*x)/(d - e*((b + q)/(2*c)))) 
^p)   Subst[Int[x^m*Simp[1 - x/(d - e*((b - q)/(2*c))), x]^p*Simp[1 - x/(d 
- e*((b + q)/(2*c))), x]^p, x], x, d + e*x], x]] /; FreeQ[{a, b, c, d, e, m 
, p}, x]
 
Maple [F]

\[\int \left (c \,x^{2}+b x +a \right )^{p} \left (e x +d \right )^{-2 p}d x\]

Input:

int((c*x^2+b*x+a)^p/((e*x+d)^(2*p)),x)
 

Output:

int((c*x^2+b*x+a)^p/((e*x+d)^(2*p)),x)
 

Fricas [F]

\[ \int (d+e x)^{-2 p} \left (a+b x+c x^2\right )^p \, dx=\int { \frac {{\left (c x^{2} + b x + a\right )}^{p}}{{\left (e x + d\right )}^{2 \, p}} \,d x } \] Input:

integrate((c*x^2+b*x+a)^p/((e*x+d)^(2*p)),x, algorithm="fricas")
 

Output:

integral((c*x^2 + b*x + a)^p/(e*x + d)^(2*p), x)
 

Sympy [F(-1)]

Timed out. \[ \int (d+e x)^{-2 p} \left (a+b x+c x^2\right )^p \, dx=\text {Timed out} \] Input:

integrate((c*x**2+b*x+a)**p/((e*x+d)**(2*p)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (d+e x)^{-2 p} \left (a+b x+c x^2\right )^p \, dx=\int { \frac {{\left (c x^{2} + b x + a\right )}^{p}}{{\left (e x + d\right )}^{2 \, p}} \,d x } \] Input:

integrate((c*x^2+b*x+a)^p/((e*x+d)^(2*p)),x, algorithm="maxima")
 

Output:

integrate((c*x^2 + b*x + a)^p/(e*x + d)^(2*p), x)
 

Giac [F]

\[ \int (d+e x)^{-2 p} \left (a+b x+c x^2\right )^p \, dx=\int { \frac {{\left (c x^{2} + b x + a\right )}^{p}}{{\left (e x + d\right )}^{2 \, p}} \,d x } \] Input:

integrate((c*x^2+b*x+a)^p/((e*x+d)^(2*p)),x, algorithm="giac")
 

Output:

integrate((c*x^2 + b*x + a)^p/(e*x + d)^(2*p), x)
 

Mupad [F(-1)]

Timed out. \[ \int (d+e x)^{-2 p} \left (a+b x+c x^2\right )^p \, dx=\int \frac {{\left (c\,x^2+b\,x+a\right )}^p}{{\left (d+e\,x\right )}^{2\,p}} \,d x \] Input:

int((a + b*x + c*x^2)^p/(d + e*x)^(2*p),x)
 

Output:

int((a + b*x + c*x^2)^p/(d + e*x)^(2*p), x)
 

Reduce [F]

\[ \int (d+e x)^{-2 p} \left (a+b x+c x^2\right )^p \, dx=\int \frac {\left (c \,x^{2}+b x +a \right )^{p}}{\left (e x +d \right )^{2 p}}d x \] Input:

int((c*x^2+b*x+a)^p/((e*x+d)^(2*p)),x)
 

Output:

int((a + b*x + c*x**2)**p/(d + e*x)**(2*p),x)